Global environmental changes can have immediate impacts on plant growth, physiology, and phenology. Long-term effects that are only observable after one or more generations are also likely to occur. These transgenerational effects can result either from maternal environmental effects or from evolutionary responses to novel selection pressures and are important because they may alter the ultimate ecological impact of the environmental change. Here, we show that transgenerational effects of atmospheric carbon dioxide (CO(2)) and soil nitrogen (N) treatments influence the magnitude of plant growth responses to elevated CO(2) (eCO(2)). We collected seeds from Lupinus perennis, Poa pratensis, and Schizachyrium scoparium populations that had experienced five growing seasons of ambient CO(2) (aCO(2)) or eCO(2) treatments and ambient or increased N deposition and planted these seeds into aCO(2) or eCO(2) environments. We found that the offspring eCO(2) treatments stimulated immediate increases in L. perennis and P. pratensis growth and that the maternal CO(2) environment influenced the magnitude of this growth response for L. perennis: biomass responses of offspring from the eCO(2) maternal treatments were only 54% that of the offspring from the aCO(2) maternal treatments. Similar trends were observed for P. pratensis and S. scoparium. We detected some evidence that long-term N treatments also altered growth responses to eCO(2); offspring reared from seed from maternal N-addition treatments tended to show greater positive growth responses to eCO(2) than offspring from ambient N maternal treatments. However, the effects of long-term N treatments on offspring survival showed the opposite pattern. Combined, our results suggest that transgenerational effects of eCO(2) and N-addition may influence the growth stimulation effects of eCO(2), potentially altering the long-term impacts of eCO(2) on plant populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.