Abstract. Riparian zones are habitats of critical conservation concern worldwide, as they are known to filter agricultural contaminants, buffer landscapes against erosion, and provide habitat for high numbers of species. Here we test the generality of the notion that riparian habitats harbor more species than adjacent upland habitats. Using previously published data collected from seven continents and including taxa ranging from Antarctic soil invertebrates to tropical rain forest lianas and primates, we show that riparian habitats do not harbor higher numbers of species, but rather support significantly different species pools altogether. In this way, riparian habitats increase regional (␥-) richness across the globe by Ͼ50%, on average. Thus conservation planners can easily increase the number of species protected in a regional portfolio by simply including a river within terrestrial biodiversity reserves. Our analysis also suggests numerous possible improvements for future studies of species richness gradients across riparian and upland habitats. First, Ͻ15% of the studies in our analysis included estimates of more than one taxonomic group of interest. Second, within a given taxonomic group, studies employed variable methodologies and sampling areas in pursuit of richness and turnover estimates. Future analyses of species richness patterns in watersheds should aim to include a more comprehensive suite of taxonomic groups and should measure richness at multiple spatial scales.
Microbial activity in semiarid and arid environments is closely related to the timing, intensity, and amount of precipitation. The characteristics of the soil surface, especially the influence of biological soil crusts, can determine the amount, location, and timing of water infiltration into desert soils, which, in turn, determines the type and size of microbial response. Nutrients resulting from this pulse then create a positive feedback as increases in microbial and plant biomass enhance future resource capture or, alternatively, may be lost to the atmosphere, deeper soils, or downslope patches. When rainfall intensity overwhelms the water infiltration capacity of the plant interspace or the plant patch, overland water flow links otherwise separated patches at many different scales via the transport of nutrients in water, soil, and organic matter. For example, material carried from the plant interspace is often deposited under an adjacent plant. Alternatively, material from both of these patches may be carried to rills that feed ephemeral channels, thence to seasonally intermittent and, finally, perennial streams. These inputs can either be retained by the stream–riparian ecosystem or be exported in surface flow. However, in larger perennial streams, the fate of these material inputs is confounded by the impact of storm‐driven flows on the extant aquatic biota, as flash floods can also represent succession‐initiating disturbances to the stream–riparian ecosystem on a wide range of time scales. In contrast to uplands where precipitation initiates the microbial response, nutrient transfers can support a flush of plant uptake and microbial processing, triggered by high nutrient concentrations and changed nutrient form (e.g., nitrate or ammonium). The nature and strength of the linkages between the different ecosystem components define the structure and function of arid ecosystems. Losses of materials are natural processes, but it is problematic when “conserving” systems become “leaky” via anthropogenic disturbance and losses exceed gains.
1. In a nitrogen (N)-limited river subject to Mediterranean summer drought hydrology, the colour of macroalgal proliferations changed with successional and seasonal changes in epiphyte assemblages. New growth of the dominant macroalga, Cladophora glomerata, was green, as were proliferations of Oedogonium, Mougeotia and Spirogyra, which did not become heavily colonized with diatoms. Green Cladophora turned yellow as Cladophora filaments became colonized by diatoms that were not N fixers, and turned rust-coloured as later-successional epiphyte assemblages became dominated by dense Epithemia turgida and E. sorex, which both contain N-fixing cyanobacterial endosymbionts. 2. The rate and composition of insect emergence from floating algal mats differed among proliferations of different colour. The rates of emergence (individuals day )1 500 cm )2 ) of nematoceran flies were three to 25 times greater from yellow or rusty-coloured Cladophora mats than from green Cladophora, Oedogonium or Mougeotia mats that had lower epiphyte densities. Biomass emergence from Cladophora mats that were rusty in colour was eight to 10 times greater than from yellow Cladophora mats, because larger nematocerans dominated in rusty mats (Chironominae versus Ceratopogonidae in yellow mats). 3. Proliferations of Epithemia-infested Cladophora occur at and above drainage areas of about 100 km 2 (channel widths of 25-30 m) in this river network, coinciding with the drainage area threshold where a step increase in concentration of total dissolved N is observed during summer. 4. In rivers under Mediterranean climate regimes, algal succession during the prolonged low flow season is less subject to stochastic interruption by spates than in rivers under more continental climates. Under these summer drought conditions, photogrammetric detection of colour changes in algal proliferations may help us track reach or basin-scale change in their ecological functions.
The elemental composition of solutes transported by rivers reflects combined influences of surrounding watersheds and transformations within stream networks, yet comparatively little is known about downstream changes in effects of watershed loading vs. in-channel processes. In the forested watershed of a river under a mediterranean hydrologic regime, we examined the influence of longitudinal changes in environmental conditions on water-column nutrient composition during summer base flow across a network of sites ranging from strongly heterotrophic headwater streams to larger, more autotrophic sites downstream. Small streams (0.1-10 km2 watershed area) had longitudinally similar nutrient concentration and composition with low (approximately 2) dissolved nitrogen (N) to phosphorus (P) ratios. Abrupt deviations from this pattern were observed in larger streams with watershed areas > 100 km2 where insolation and algal abundance and production rapidly increased. Downstream, phosphorus and silica concentrations decreased by > 50% compared to headwater streams, and dissolved organic carbon and nitrogen increased by approximately 3-6 times. Decreasing dissolved P and increasing dissolved N raised stream-water N:P to 46 at the most downstream sites, suggesting a transition from N limitation in headwaters to potential P limitation in larger channels. We hypothesize that these changes were mediated by increasing algal photosynthesis and N fixation by benthic algal assemblages, which, in response to increasing light availability, strongly altered stream-water nutrient concentration and stoichiometry in larger streams and rivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.