Cancer is the leading cause of death in dogs, yet there are no established screening paradigms for early detection. Liquid biopsy methods that interrogate cancer-derived genomic alterations in cell-free DNA in blood are being adopted for multi-cancer early detection in human medicine and are now available for veterinary use. The CANcer Detection in Dogs (CANDiD) study is an international, multi-center clinical study designed to validate the performance of a novel multi-cancer early detection “liquid biopsy” test developed for noninvasive detection and characterization of cancer in dogs using next-generation sequencing (NGS) of blood-derived DNA; study results are reported here. In total, 1,358 cancer-diagnosed and presumably cancer-free dogs were enrolled in the study, representing the range of breeds, weights, ages, and cancer types seen in routine clinical practice; 1,100 subjects met inclusion criteria for analysis and were used in the validation of the test. Overall, the liquid biopsy test demonstrated a 54.7% (95% CI: 49.3–60.0%) sensitivity and a 98.5% (95% CI: 97.0–99.3%) specificity. For three of the most aggressive canine cancers (lymphoma, hemangiosarcoma, osteosarcoma), the detection rate was 85.4% (95% CI: 78.4–90.9%); and for eight of the most common canine cancers (lymphoma, hemangiosarcoma, osteosarcoma, soft tissue sarcoma, mast cell tumor, mammary gland carcinoma, anal sac adenocarcinoma, malignant melanoma), the detection rate was 61.9% (95% CI: 55.3–68.1%). The test detected cancer signal in patients representing 30 distinct cancer types and provided a Cancer Signal Origin prediction for a subset of patients with hematological malignancies. Furthermore, the test accurately detected cancer signal in four presumably cancer-free subjects before the onset of clinical signs, further supporting the utility of liquid biopsy as an early detection test. Taken together, these findings demonstrate that NGS-based liquid biopsy can offer a novel option for noninvasive multi-cancer detection in dogs.
Since introducing cell-free DNA screening, Sequenom Laboratories has analyzed over 1 million clinical samples. More than 30,000 of these samples were from multifetal gestations (including twins, triplets and higher-order multiples). The clinical laboratory experience with the first 30,000 multifetal samples will be discussed. Maternal plasma samples from multifetal gestations were subjected to DNA extraction and library preparation followed by massively parallel sequencing. Sequencing data were analyzed to identify autosomal trisomies and other subchromosomal events. Fetal fraction requirements were adjusted in proportion to fetal number. Outcome data, when voluntarily received from the ordering provider, were collected from internal case notes. Feedback was received in 50 cases. The positivity rate in multifetal samples for trisomy 21 was 1.50%, 0.47% for trisomy 18, and 0.21% for trisomy 13. Average total sample fetal fraction was 12.2% at a mean gestational age of 13 weeks 6 days. Total non-reportable rate was 5.95%. Estimated performance based on ad hoc clinical feedback demonstrates that possible maximum sensitivity and specificity meet or exceed the original performance from clinical validation studies. Cell-free DNA (cfDNA) screening provides certain advantages over that of conventional screening in multifetal gestations and is available in higher-order multiples.
Purpose Of 86,902 prenatal genome-wide cell-free DNA (cfDNA) screening tests, 4,121 were positive for a chromosome abnormality. This study examines 490 cases screen-positive for one or more subchromosomal copy-number variants (CNV) from genome-wide cfDNA screening. Methods Cases positive for one or more subchromosomal CNV from genome-wide cfDNA screening and diagnostic outcomes were compiled. Diagnostic testing trends were analyzed, positive predictive values (PPVs) were calculated, and the type of chromosomal abnormalities ultimately confirmed by diagnostic testing were described. Results CNVs were identified in 0.56% of screened specimens. Of the 490 cases screen-positive for one or more CNV, diagnostic outcomes were available for 244 cases (50%). The overall PPV among the cases with diagnostic outcomes was 74.2% (95% CI: 68.1–79.5%) and 71.8% (95% CI: 65.5–77.4%) for “fetal-only” events. Overall, isolated CNVs showed a lower PPV of 61.0% (95% CI: 52.5–68.8%) compared to complex CNVs at 93.9% (95% CI: 86.6–97.5%). Isolated deletions/duplications and unbalanced structural rearrangements were the most common diagnostic outcomes when isolated and complex CNVs were identified by cfDNA screening, respectively. Conclusion Genome-wide cfDNA screening identifies chromosomal abnormalities beyond the scope of traditional cfDNA screening, and the overall PPV associated with subchromosomal CNVs in cases with diagnostic outcomes was >70%.
Objective: To examine the relationship between the fraction of cell-free DNA (cfDNA) affected by aneuploidy compared to the overall fetal fraction of a prenatal screening specimen and its effect on positive predictive value (PPV). Method: CfDNA specimens positive for trisomy 13, 18, and 21 with diagnostic outcomes were analysed over a 22-month period in one clinical laboratory. For each positive specimen, a "mosaicism ratio" (MR) was calculated by dividing the fraction of cfDNA affected by aneuploidy by the overall fetal fraction of the specimen. PPVs were calculated and analyzed based on various MR ranges. Results: Trisomy 13 was the aneuploidy most commonly seen in mosaic form, followed by trisomy 18 and trisomy 21. Significant differences in positive predictive values were noted for all three trisomies between samples with an MR in the "mosaic" versus "non-mosaic" range, as well as between results classified as "lowmosaic" versus "high-mosaic." Conclusion: PPVs may be influenced, in part, by the mosaicism ratio associated with a particular result. The data generated from this study may be useful in providing more personalized risk assessments for patients with positive cfDNA screening results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.