Does our ability to visually identify everyday objects rely solely on access to information about their appearance or on a more distributed representation incorporating other object properties? Using functional magnetic resonance imaging, we addressed this question by having subjects visually match pictures of novel objects before and after extensive training to use these objects to perform specific tool-like tasks. After training, neural activity emerged in regions associated with the motion (left middle temporal gyrus) and manipulation (left intraparietal sulcus and premotor cortex) of common tools, whereas activity became more focal and selective in regions representing their visual appearance (fusiform gyrus). These findings indicate that this distributed network is automatically engaged in support of object identification. Moreover, the regions included in this network mirror those active when subjects retrieve information about tools and their properties, suggesting that, as a result of training, these previously novel objects have attained the conceptual status of "tools."
Motivated by neuropsychological investigations of category-specific impairments, many functional brain imaging studies have found distinct patterns of neural activity associated with different object categories. However, the extent to which these category-related activation patterns reflect differences in conceptual representation remains controversial. To investigate this issue, functional magnetic resonance imaging (fMRI) was used to record changes in neural activity while subjects interpreted animated vignettes composed of simple geometric shapes in motion. Vignettes interpreted as conveying social interactions elicited a distinct and distributed pattern of neural activity, relative to vignettes interpreted as mechanical actions. This neural system included regions in posterior temporal cortex associated with identifying human faces and other biological objects. In contrast, vignettes interpreted as conveying mechanical actions resulted in activity in posterior temporal lobe sites associated with identifying manipulable objects such as tools. Moreover, social, but not mechanical, interpretations elicited activity in regions implicated in the perception and modulation of emotion (right amygdala and ventromedial prefrontal cortex). Perceiving and understanding social and mechanical concepts depends, in part, on activity in distinct neural networks. Within the social domain, the network includes regions involved in processing and storing information about the form and motion of biological objects, and in perceiving, expressing, and regulating affective responses.
Naming pictures of objects from different categories (e.g. animals or tools) evokes maximal responses in different brain regions. However, these 'category-specific' regions typically respond to other object categories as well. Here we used stimulus familiarity to further investigate category representation. Naming pictures of animals and tools elicited category-related activity in a number of previously identified regions. This activity was reduced for familiar relative to novel stimuli. Reduced activation occurred in all object responsive areas in the ventral occipito-temporal cortex, regardless of which category initially produced the maximal response. This suggests that object representations in the ventral occipito-temporal cortex are not limited to a discrete area, but rather are widespread and overlapping. In other regions (e.g. the lateral temporal and left premotor cortices), experience-dependent reductions were category specific. Together, these findings suggest that category-related activations reflect the retrieval of information about category-specific features and attributes.
We used rapid, event-related fMRI to identify the neural systems underlying object semantics. During scanning, subjects silently read rapidly presented word pairs (150 msec, SOA = 250 msec) that were either unrelated in meaning (ankle-carrot), semantically related (fork-cup), or identical (crow-crow). Activity in the left posterior region of the fusiform gyrus and left inferior frontal cortex was modulated by word-pair relationship. Semantically related pairs yielded less activity than unrelated pairs, but greater activity than identical pairs, mirroring the pattern of behavioral facilitation as measured by word reading times. These findings provide strong support for the involvement of these areas in the automatic processing of object meaning. In addition, words referring to animate objects produced greater activity in the lateral region of the fusiform gyri, right superior temporal sulcus, and medial region of the occipital lobe relative to manmade, manipulable objects, whereas words referring to manmade, manipulable objects produced greater activity in the left ventral premotor, left anterior cingulate, and bilateral parietal cortices relative to animate objects. These findings are consistent with the dissociation between these areas based on sensory- and motor-related object properties, providing further evidence that conceptual object knowledge is housed, in part, in the same neural systems that subserve perception and action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.