One of the major problems in pattern mining is the explosion of the number of results. Tight constraints reveal only common knowledge, while loose constraints lead to an explosion in the number of returned patterns. This is caused by large groups of patterns essentially describing the same set of transactions. In this paper we approach this problem using the MDL principle: the best set of patterns is that set that compresses the database best. For this task we introduce the Krimp algorithm. Experimental evaluation shows that typically only hundreds of itemsets are returned; a dramatic reduction, up to seven orders of magnitude, in the number of frequent item sets. These selections, called code tables, are of high quality. This is shown with compression ratios, swap-randomisation, and the accuracies of the code table-based Responsible editor: M.J. Zaki. The research described in this paper builds upon and extends the work appearing in SDM'06 (Siebes et al. 2006) and ECML PKDD'06 (van Leeuwen et al. 2006). 123 170 J. Vreeken et al.Krimp classifier, all obtained on a wide range of datasets. Further, we extensively evaluate the heuristic choices made in the design of the algorithm.
One of the major problems in frequent item set mining is the explosion of the number of results: it is difficult to find the most interesting frequent item sets. The cause of this explosion is that large sets of frequent item sets describe essentially the same set of transactions. In this paper we approach this problem using the MDL principle: the best set of frequent item sets is that set that compresses the database best. We introduce four heuristic algorithms for this task, and the experiments show that these algorithms give a dramatic reduction in the number of frequent item sets. Moreover, we show how our approach can be used to determine the best value for the min-sup threshold.
Spotting anomalies in large multi-dimensional databases is a crucial task with many applications in finance, health care, security, etc. We introduce COMPREX, a new approach for identifying anomalies using pattern-based compression. Informally, our method finds a collection of dictionaries that describe the norm of a database succinctly, and subsequently flags those points dissimilar to the norm-with high compression cost-as anomalies.Our approach exhibits four key features: 1) it is parameterfree; it builds dictionaries directly from data, and requires no userspecified parameters such as distance functions or density and similarity thresholds, 2) it is general; we show it works for a broad range of complex databases, including graph, image and relational databases that may contain both categorical and numerical features, 3) it is scalable; its running time grows linearly with respect to both database size as well as number of dimensions, and 4) it is effective; experiments on a broad range of datasets show large improvements in both compression, as well as precision in anomaly detection, outperforming its state-of-the-art competitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.