Wben a crude extract from 8-day-old wheat (Trincum aestivum L. cv. Olympic) leaves was fractionated by a combination of ammonium sulfate precipitation and Sephadex G-100 chromatography the presence of three factors which have a marked effect on the stability of highly purified nitrate reductase was revealed. Two of these factors (I and Ill) have a positive effect and the other factor (II) has a negative effect on stability. Factors I and III can each overcome the instability-promoting effect of II; however, this was apparently not due to a direct effect on factor II.Both factors I and III have been subjected to further purification. Factor I can be separated into at least four fractions, each with stability-promoting activity. Factor III appears to be a single factor.The in vitro activity and stability of nitrate reductase in crude extracts were found to vary diurnally. Stability and activity were highest 4 hours after the start of the light period and both were minimal 1 to 3 hours after the end of the lght period. When crude extract was fractionated as described above and an assessment made of the relative amounts of I, II, and III, there appeared to be a distinct diurnal variation in their levels. Factors I and III were highest when in vitro nitrate reductase activity and stability were highest. Factor 11 was apparently out of phase in that maximum activity coincided with the time of minimum in vitro nitrate reductase activity and stability.
A nitrate reductase (EC 1.6.6.1)-inactivating factor has been isolated from 8-day-old wheat leaves. The purification schedule involved ammonium sulfate precipitation, Sephadex G-100 filtration, DEAE-cellulose chromatography, and Sephadex G-150 filtration. No accurate assessment could be made as to the degree of purification relative to crude extract as the inactivating factor could not be detected in crude extract. However a 2,446-fold purification was achieved from the ammonium sulfate fraction to the pooled enzyme from the Sephadex G-150 step.The inactivating factor was heat-labile and had a molecular weight of 37,500. The inactivating factor was particularly sensitive to the divalent metal chelators, 1,10-phenanthroline and bathophenanthroline. Evidence indicated that Fe2" may be the functional metal. The trypsin inhibitors Na-p-tosyl-L-lysine chloromethyl ketone and a-N-benzoyl-L-arginine were inhibitory. However, phenylmethyl sulfonyl fluoride, an inhibitor of serine peptide hydrolases, was not inhibitory. Neither casein nor hemoglobin nor a range of artificial substrates were hydrolyzed by the inactivating factor.Highly purified wheat leaf nitrite reductase (EC 1.7.993) and ribulose 1,5-bisphosphate carboxylase:oxygenase (EC 4.1.139) were not affected by the nitrate reductase-inactivating factor.The inactivating factor was more active toward the NADH-nitrate reductase compared to either of the component enzymic activities flavin adenine mononucleotide-nitrate reductase and methyl viologen-nitrate reductase. The NADH-ferricyanide reductase (diaphorase) component was the least sensitive.In a previous paper (17) we reported on the occurrence in crude extracts from wheat leaves (Triticum aestivum L.) of two types of factors which appeared to affect the in vitro stability of highly purified nitrate reductase. One of these factors (II) reduced the stability of NR3 while the other factors (I and III) seemed to confer stability on NR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.