Research on practices to share and reuse data will inform the design of infrastructure to support data collection, management, and discovery in the long tail of science and technology. These are research domains in which data tend to be local in character, minimally structured, and minimally documented. We report on a ten-year study of the Center for Embedded Network Sensing (CENS), a National Science Foundation Science and Technology Center. We found that CENS researchers are willing to share their data, but few are asked to do so, and in only a few domain areas do their funders or journals require them to deposit data. Few repositories exist to accept data in CENS research areas.. Data sharing tends to occur only through interpersonal exchanges. CENS researchers obtain data from repositories, and occasionally from registries and individuals, to provide context, calibration, or other forms of background for their studies. Neither CENS researchers nor those who request access to CENS data appear to use external data for primary research questions or for replication of studies. CENS researchers are willing to share data if they receive credit and retain first rights to publish their results. Practices of releasing, sharing, and reusing of data in CENS reaffirm the gift culture of scholarship, in which goods are bartered between trusted colleagues rather than treated as commodities.
Abstracte-Science promises to increase the pace of science via fast, distributed access to computational resources, analytical tools, and digital libraries. "Big science" fields such as physics and astronomy that collaborate around expensive instrumentation have constructed shared digital libraries to manage their data and documents, while "little science" research areas that gather data through hand-crafted fieldwork continue to manage their data locally. As habitat ecology researchers begin to deploy embedded sensor networks, they are confronting an array of challenges in capturing, organizing, and managing large amounts of data. The scientists and their partners in computer science and engineering make use of common datasets but interpret the data differently. Studies of this field in transition offer insights into the role of digital libraries in e-Science, how data practices evolve as science becomes more instrumented, and how scientists, computer scientists, and engineers collaborate around data. Among the lessons learned are that data on the same variables are gathered by multiple means, that data exist in many states and in many places, and that publication practices often drive data collection practices. Data sharing is embraced in principle but little sharing actually occurs, due to interrelated factors such as lack of demand, lack of standards, and concerns about publication, ownership, data quality, and ethics. We explore the implications of these findings for data policy and digital library architecture. Research reported here is affiliated with the Center for Embedded Networked Sensing.
Science and technology always have been interdependent, but never more so than with today's highly instrumented data collection practices. We report on a long-term study of collaboration between environmental scientists (biology, ecology, marine sciences), computer scientists, and engineering research teams as part of a five-university distributed science and technology research center devoted to embedded networked sensing. The science and technology teams go into the field with mutual interests in gathering scientific data. "Data" are constituted very differently between the research teams. What are data to the science teams may be context to the technology teams, and vice versa. Interdependencies between the teams determine the ability to collect, use, and manage data in both the short and long terms. Four types of data were identified, which are managed separately, limiting both reusability of data and replication of research. Decisions on what data to curate, for whom, for what purposes, and for how long, should consider the interdependencies between scientific and technical processes, the complexities of data collection, and the disposition of the resulting data.
Abstract. For users to trust and interpret the data in scientific digital libraries, they must be able to assess the integrity of those data. Criteria for data integrity vary by context, by scientific problem, by individual, and a variety of other factors. This paper compares technical approaches to data integrity with scientific practices, as a case study in the Center for Embedded Networked Sensing (CENS) in the use of wireless, in-situ sensing for the collection of large scientific data sets. The goal of this research is to identify functional requirements for digital libraries of scientific data that will serve to bridge the gap between current technical approaches to data integrity and existing scientific practices.
Abstract. Distributed sensing systems for studying scientific phenomena are critical applications of information technologies. By embedding computational intelligence in the environment of study, sensing systems allow researchers to study phenomena at spatial and temporal scales that were previously impossible to achieve. We present an ethnographic study of field research practices among researchers in the Center for Embedded Networked Sensing (CENS), a National Science Foundation Science & Technology Center devoted to developing wireless sensing systems for scientific and social applications. Using the concepts of boundary objects and trading zones, we trace the processes of collaborative research around sensor technology development and adoption within CENS. Over the 10-year lifespan of CENS, sensor technologies, sensor data, field research methods, and statistical expertise each emerged as boundary objects that were understood differently by the science and technology partners. We illustrate how sensing technologies were incompatible with field-based environmental research until researchers "unearthed" their infrastructures, explicitly reintroducing human skill and expertise into the data collection process and developing new collaborative languages that emphasized building dynamic sensing systems that addressed human needs. In collaborating around a dynamic sensing model, the sensing systems became embedded not in the environment of study, but in the practices of the scientists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.