Biosensors are increasingly taking a more active role in health science. The current needs for the constant monitoring of biomedical signals, as well as the growing spending on public health, make it necessary to search for materials with a combination of properties such as biocompatibility, electroactivity, resorption, and high selectivity to certain bioanalytes. Conducting polymer hydrogels seem to be a very promising materials, since they present many of the necessary properties to be used as biosensors. Furthermore, their properties can be shaped and enhanced by designing conductive polymer hydrogel-based composites with more specific functionalities depending on the end application. This work will review the recent state of the art of different biological hydrogels for biosensor applications, discuss the properties of the different components alone and in combination, and reveal their high potential as candidate materials in the fabrication of all-organic diagnostic, wearable, and implantable sensor devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.