Most individuals who experience aphasia after a stroke recover to some extent, with the majority of gains taking place in the first year. The nature and timecourse of this recovery process is only partially understood, especially its dependence on lesion location and extent, which are the most important determinants of outcome. The aim of this study was to provide a comprehensive description of patterns of recovery from aphasia in the first year after stroke. We recruited 334 patients with acute left hemisphere supratentorial ischemic or hemorrhagic stroke, and evaluated their speech and language function within 5 days using the Quick Aphasia Battery. At this initial timepoint, 218 patients presented with aphasia. Individuals with aphasia were followed longitudinally, with follow-up evaluations of speech and language at 1 month, 3 months, and 1 year post stroke, wherever possible. Lesions were manually delineated based on acute clinical MRI or CT imaging. Patients with and without aphasia were divided into 13 groups of individuals with similar, commonly occurring patterns of brain damage. Trajectories of recovery were then investigated as a function of group (i.e., lesion location and extent) and speech/language domain (overall language function, word comprehension, sentence comprehension, word finding, grammatical construction, phonological encoding, speech motor programming, speech motor execution, and reading). We found that aphasia is dynamic, multidimensional, and gradated, with little explanatory role for aphasia subtypes or binary concepts such as fluency. Patients with circumscribed frontal lesions recovered well, consistent with some previous observations. More surprisingly, most patients with larger frontal lesions extending into the parietal or temporal lobes also recovered well, as did patients with relatively circumscribed temporal, temporoparietal, or parietal lesions. Persistent moderate or severe deficits were common only in patients with extensive damage throughout the middle cerebral artery distribution, or extensive temporoparietal damage. There were striking differences between speech/language domains in their rates of recovery and their relationships to overall language function, suggesting that specific domains differ in the extent to which they are redundantly represented throughout the language network, as opposed to depending on specialized cortical substrates. Our findings have an immediate clinical application in that they will enable clinicians to estimate the likely course of recovery for individual patients, as well as the uncertainty of these predictions, based on acutely observable neurological factors.
After a stroke, individuals with aphasia often recover to a certain extent over time. This recovery process may be dependent on the health of surviving brain regions. Leukoaraiosis (white matter hyperintensities on MRI reflecting cerebral small vessel disease) is one indication of compromised brain health and is associated with cognitive and motor impairment. Previous studies have suggested that leukoaraiosis may be a clinically relevant predictor of aphasia outcomes and recovery, although findings have been inconsistent. We investigated the relationship between leukoaraiosis and aphasia in the first year after stroke. We recruited 267 patients with acute left hemispheric stroke and coincident fluid attenuated inversion recovery (FLAIR) MRI. Patients were evaluated for aphasia within 5 days of stroke, and 174 patients presented with aphasia acutely. Of these, 84 patients were evaluated at ∼3 months post-stroke or later to assess longer-term speech and language outcomes. Multivariable regression models were fit to the data to identify any relationships between leukoaraiosis and initial aphasia severity, extent of recovery, or longer-term aphasia severity. We found that leukoaraiosis was present to varying degrees in 90% of patients. However, leukoaraiosis did not predict initial aphasia severity, aphasia recovery, or longer-term aphasia severity. The lack of any relationship between leukoaraiosis severity and aphasia recovery may reflect the anatomical distribution of cerebral small vessel disease, which is largely medial to the white matter pathways that are critical for speech and language function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.