Sustainable management of agricultural water resources requires improved understanding of irrigation patterns in space and time. We produced annual, high‐resolution (30 m) irrigation maps for 1999–2016 by combining all available Landsat satellite imagery with climate and soil covariables in Google Earth Engine. Random forest classification had accuracies from 92 to 100% and generally agreed with county statistics (r2 = 0.88–0.96). Two novel indices that integrate plant greenness and moisture information show promise for improving satellite classification of irrigation. We found considerable interannual variability in irrigation location and extent, including a near doubling between 2002 and 2016. Statistical modeling suggested that precipitation and commodity price influenced irrigated extent through time. High prices incentivized expansion to increase crop yield and profit, but dry years required greater irrigation intensity, thus reducing area in this supply‐limited region. Data sets produced with this approach can improve water sustainability by providing consistent, spatially explicit tracking of irrigation dynamics over time.
Climate-mediated changes in hybridization will dramatically alter the genetic diversity, adaptive capacity, and evolutionary trajectory of interbreeding species. Our ability to predict the consequences of such changes will be key to future conservation and management decisions. Here we tested through simulations how recent warming (over the course of a 32-y period) is affecting the geographic extent of a climate-mediated developmental threshold implicated in maintaining a butterfly hybrid zone ( and ; Lepidoptera: Papilionidae). These simulations predict a 68-km shift of this hybrid zone. To empirically test this prediction, we assessed genetic and phenotypic changes using contemporary and museum collections and document a 40-km northward shift of this hybrid zone. Interactions between the two species appear relatively unchanged during hybrid zone movement. We found no change in the frequency of hybridization, and regions of the genome that experience little to no introgression moved largely in concert with the shifting hybrid zone. Model predictions based on climate scenarios predict this hybrid zone will continue to move northward, but with substantial spatial heterogeneity in the velocity (55-144 km/1 °C), shape, and contiguity of movement. Our findings suggest that the presence of nonclimatic barriers (e.g., genetic incompatibilities) and/or nonlinear responses to climatic gradients may preserve species boundaries as the species shift. Further, we show that variation in the geography of hybrid zone movement could result in evolutionary responses that differ for geographically distinct populations spanning hybrid zones, and thus have implications for the conservation and management of genetic diversity.
In modern agriculture, the interplay between complex physical, agricultural, and socioeconomic water use drivers must be fully understood to successfully manage water supplies on extended timescales. This is particularly evident across large portions of the High Plains Aquifer where groundwater levels have declined at unsustainable rates despite improvements in both the efficiency of water use and water productivity in agricultural practices. Improved technology and land use practices have not mitigated groundwater level declines, thus water management strategies must adapt accordingly or risk further resource loss. In this study, we analyze the water-energy-food nexus over the High Plains Aquifer as a framework to isolate the major drivers that have shaped the history, and will direct the future, of water use in modern agriculture. Based on this analysis, we conclude that future water management strategies can benefit from: (1) prioritizing farmer profit to encourage decision-making that aligns with strategic objectives, (2) management of water as both an input into the water-energy-food nexus and a key incentive for farmers, (3) adaptive frameworks that allow for short-term objectives within long-term goals, (4) innovative strategies that fit within restrictive political frameworks, (5) reduced production risks to aid farmer decision-making, and (6) increasing the political desire to conserve valuable water resources. This research sets the foundation to address water management as a function of complex decision-making trends linked to the water-energy-food nexus. Water management strategy recommendations are made based on the objective of balancing farmer profit and conserving water resources to ensure future agricultural production.
Irrigation enhances agricultural yields and stabilizes farmer incomes, but overexploitation has depleted groundwater resources around the globe. Strategies to address this sustainability challenge differ widely. Socio-ecological systems research suggests that management of common pool resources like groundwater would benefit from localized approaches that combine self-organization along with active monitoring. In 2012, the US state of Kansas established a Local Enhanced Management Area (LEMA) program, empowering farmers to work with local and state officials to develop five-year, enforceable groundwater conservation programs. Here, we assessed the efficacy of the first LEMA implemented from 2013 to 2017 using a causal impact methodology based on Bayesian structural time series that is new to agrohydrology. Compared to control scenarios, we found that the LEMA reduced water use by 31% over the five-year period, with early indications of stabilizing groundwater levels. Three main conservation strategies can lead to reduced water use: (1) reducing irrigated area, (2) reducing irrigation amount applied to existing crops through improved efficiency, and/or (3) switching to crops that require less water. To partition water savings among these strategies, we combined satellite-derived irrigated areas and crop type maps with well records. We found that farmers were able to largely maintain irrigated area and achieved the majority of pumping reductions (72%) from improvements in irrigation efficiency, followed by expansion of crops with lower water demand (19%). The results of this analysis demonstrate that conservation programs that are irrigatordriven with regulatory oversight can provide a path toward sustainability in stressed aquifers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.