Results provide important new information on health behavior changes among those with chronic disease and suggest that intensive efforts are required to help initiate and maintain lifestyle improvements among this population.
Judicious use of real-world data (RWD) is expected to make all steps in the development and use of pharmaceuticals more effective and efficient, including research and development, regulatory decision making, health technology assessment, pricing, and reimbursement decisions and treatment. A "learning healthcare system" based on electronic health records and other routinely collected data will be required to harness the full potential of RWD to complement evidence based on randomized controlled trials. We describe and illustrate with examples the growing demand for a learning healthcare system; we contrast the exigencies of an efficient pharmaceutical ecosystem in the future with current deficiencies highlighted in recently published Organisation for Economic Co-operation and Development (OECD) reports; and we reflect on the steps necessary to enable the transition from healthcare data to actionable information. A coordinated effort from all stakeholders and international cooperation will be required to increase the speed of implementation of the learning healthcare system, to everybody's benefit.
BackgroundComputer simulation models are used increasingly to support public health research and policy, but questions about their quality persist. The purpose of this article is to review the principles and methods for validation of population-based disease simulation models.MethodsWe developed a comprehensive framework for validating population-based chronic disease simulation models and used this framework in a review of published model validation guidelines. Based on the review, we formulated a set of recommendations for gathering evidence of model credibility.ResultsEvidence of model credibility derives from examining: 1) the process of model development, 2) the performance of a model, and 3) the quality of decisions based on the model. Many important issues in model validation are insufficiently addressed by current guidelines. These issues include a detailed evaluation of different data sources, graphical representation of models, computer programming, model calibration, between-model comparisons, sensitivity analysis, and predictive validity. The role of external data in model validation depends on the purpose of the model (e.g., decision analysis versus prediction). More research is needed on the methods of comparing the quality of decisions based on different models.ConclusionAs the role of simulation modeling in population health is increasing and models are becoming more complex, there is a need for further improvements in model validation methodology and common standards for evaluating model credibility.
The CRMM can project the population health and economic impacts of cancer control programs in Canada and the impacts of major risk factors, cancer prevention, and screening programs and new cancer treatments on population health and costs to the healthcare system. It estimates both the direct costs of medical care, as well as lost earnings and impacts on tax revenues. The lung and colorectal modules are available through the CPAC Web site (www.cancerview.ca/cancerrriskmanagement) to registered users where structured scenarios can be explored for their projected impacts. Advanced users will be able to specify new scenarios or change existing modules by varying input parameters or by accessing open source code. Model development is now being extended to cervical and breast cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.