trans-Oxasilacycloheptenes are highly reactive strained alkenes. Competition reactions showed that these seven-membered ring trans-alkenes underwent [4+2] cycloaddition reactions faster than a trans-cyclooctene. They also reacted with quinones and dimethyl acetylenedicarboxylate to form adducts with high diastereoselectivity. Kinetic studies showed that ring strain increases nucleophilicity by approximately 10(9).
In contrast to observations with carbohydrates, experiments with 4-alkoxy-substituted acetals indicate that an alkoxy group can accelerate acetal hydrolysis by up to 20-fold compared to substrates without an alkoxy group. The acceleration of ionization in more flexible acetals can be up to 200-fold when compensated for inductive effects.
Seven-membered-ring trans-alkenes undergo rapid, uncatalyzed carboboration reactions to form trialkylboranes as single diastereomers. In contrast with other trialkylboranes, which can ignite in the presence of oxygen, these trialkylboranes are stable in air. Hindered trialkylboranes can undergo reverse hydroboration reactions to form allylic silanes or can be oxidized to afford highly substituted triols. This reaction sequence permits the construction of compounds with up to five consecutive stereocenters. Control experiments and computational studies support a concerted mechanism for the migratory insertion of the alkene into the carbon-boron bond, similar to the mechanism for hydroboration.
Abstract:The reactivity of trans-oxasilacycloheptenes in [4+2] cycloadditions depends on the substitution pattern on the seven-membered ring. Unhindered trans-alkenes undergo [4+2] cycloadditions with 1,3-diphenylisobenzofuran faster than the most reactive trans-cyclooctene. Increasing the substitution of the seven-membered ring or increasing the electron density of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.