Purpose To determine the anatomic characteristics and pharmacokinetic properties of intravitreally placed bevacizumab and ranibizumab after pars plana lensectomy or pars plana vitrectomy and to compare these with nonoperated control eyes in a rabbit model. Methods Three groups of six Dutch-belted rabbits each underwent pars plana vitrectomy, pars plana lensectomy, or served as nonsurgical controls. Twelve days after surgery, 3 rabbits from each group underwent intravitreal injection in one eye with 1.25 mg/0.05 mL I-124–bevacizumab or 0.5 mg/0.05 mL I-124-ranibizumab. Serial imaging with PET/CT were obtained on Days 0, 2, 5, 7, 14, 21, 28, and 35. Measured radioactivity emission in becquerels/milliliter was used to calculate the half-lives for each agent. Results The intravitreally placed radiolabeled agents were contained within the vitreous cavity for the duration of the study. The average clearance half-lives with standard error for bevacizumab and ranibizumab after correction for radioactive decay were, respectively, 4.22 ± 0.07 days and 2.81 ± 0.05 days in unoperated eyes, 2.30 ± 0.09 days (P < 0.0001) and 2.13 ± 0.05 days (P < 0.0001) after vitrectomy, and 2.08 ± 0.07 days (P = 0.0001) and 1.79 ± 0.05 days (P < 0.0001) after lensectomy. Conclusion Intravitreal retention was longer for bevacizumab than ranibizumab within all study groups and was significantly reduced after vitrectomy and lensectomy for both agents. Consideration for more frequent intravitreal anti–vascular endothelial growth factor dosing regimens may be made for patients whose treated eyes have undergone previous vitrectomy or who are aphakic.
The eye is a model organ for the local delivery of therapeutics. This proves beneficial when treating vitreous inflammation and other ophthalmic pathologies. The chronicity of certain diseases, however, limits the effectiveness of locally administered drugs. To maintain such treatments often requires frequent office visits and can result in increased risk of infection and toxicity to the patient. This paper focuses on the implantable devices and particulate drug delivery systems that are currently being implemented and investigated to overcome these challenges. Implants currently on the market or undergoing clinical trials include those made of nonbiodegradable polymers, containing ganciclovir, fluocinolone acetonide, triamcinolone acetonide, and ranibizumab, and biodegradable polymers, containing dexamethasone, triamcinolone acetonide, and ranibizumab. Investigational intravitreal implants and particulate drug delivery systems, such as nanoparticles, microparticles, and liposomes, are also explored in this review article.
Benzo[a]pyrene is an important environmental mutagen and carcinogen. Its metabolism in cells yields the mutagenic, key ultimate carcinogen 7R,8S,9S,10R-anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide, (+)-anti-BPDE, which reacts via its 10-position with N2-dG in DNA to form the adduct (+)-trans-anti-BPDE-N2-dG. To gain molecular insights into BPDE-induced mutagenesis, we examined in vivo translesion synthesis and mutagenesis in yeast cells of a site-specific 10S (+)-trans-anti-BPDE-N2-dG adduct and the stereoisomeric 10R (−)-trans-anti-BPDE-N2-dG adduct. In wild-type cells, bypass products consisted of 76% C, 14% A and 7% G insertions opposite (+)-trans-anti-BPDE-N2-dG; and 89% C, 4% A and 4% G insertions opposite (−)-trans-anti-BPDE-N2-dG. Translesion synthesis was reduced by ∼26–37% in rad30 mutant cells lacking Polη, but more deficient in rev1 and almost totally deficient in rev3 (lacking Polζ) mutants. C insertion opposite the lesion was reduced by ∼24–33% in rad30 mutant cells, further reduced in rev1 mutant, and mostly disappeared in the rev3 mutant strain. The insertion of A was largely abolished in cells lacking either Polη, Polζ or Rev1. The insertion of G was not detected in either rev1 or rev3 mutant cells. The rad30 rev3 double mutant exhibited a similar phenotype as the single rev3 mutant with respect to translesion synthesis and mutagenesis. These results show that while the Polζ pathway is generally required for translesion synthesis and mutagenesis of the (+)- and (−)-trans-anti-BPDE-N2-dG DNA adducts, Polη, Polζ and Rev1 together are required for G→T transversion mutations, a major type of mutagenesis induced by these lesions. Based on biochemical and genetic results, we present mechanistic models of translesion synthesis of these two DNA adducts, involving both the one-polymerase one-step and two-polymerase two-step models.
The Rev1-Polζ pathway is believed to be the major mechanism of translesion DNA synthesis and base damage-induced mutagenesis in eukaryotes. While it is widely believed that Rev1 plays a non-catalytic function in translesion synthesis, the role of its dCMP transferase activity remains uncertain. To determine the relevance of its catalytic function in translesion synthesis, we separated the Rev1 dCMP transferase activity from its non-catalytic function in yeast. This was achieved by mutating two conserved amino acid residues in the catalytic domain of Rev1, i.e. D467A/E468A, where its catalytic function was abolished but its non-catalytic function remained intact. In this mutant strain, whereas translesion synthesis and mutagenesis of UV radiation were fully functional, those of a site-specific 1,N6-ethenoadenine were severely deficient. Specifically, the predominant A→G mutations resulting from C insertion opposite the lesion were abolished. Therefore, translesion synthesis and mutagenesis of 1,N6-ethenoadenine require the catalytic function of the Rev1 dCMP transferase, in contrast to those of UV lesions, which only require the non-catalytic function of Rev1. These results show that the catalytic function of the Rev1 dCMP transferase is required in a lesion-specific manner for translesion synthesis and base damage-induced mutagenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.