For fuel cell vehicles, the fuel cell stack has a soft output characteristic whereby the output voltage drops quickly with the increasing output current. In order to interface the dynamic low voltage of the fuel cell stack with the required constant high voltage (400 V) of the inverter DC link bus for fuel cell vehicles, an enhanced hybrid switching-frequency modulation strategy that can improve the voltage-gain range is proposed in this paper for the boost three-level DC-DC converter with a quasi-Z source (BTL-qZ) employed in fuel-cell vehicles. The proposed modulation strategy retains the same advantages of the original modulation strategy with more suitable duty cycles [1/3, 2/3) which avoids extreme duty cycles. Finally, the experimental results validate the feasibility of the proposed modulation strategy and the correctness of its operating principles. Therefore, the BTL-qZ converter is beneficial to interface the fuel cell stack and the DC bus for fuel cell vehicles by using the proposed modulation strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.