Since the paradigm shift in 2009 from pseudo-thermal ghost imaging (GI) to computational GI using a spatial light modulator, computational GI has enabled image formation via a single-pixel detector and thus has a cost-effective advantage in some unconventional wave bands. In this Letter, we propose an analogical paradigm known as computational holographic ghost diffraction (CH-GD) to shift ghost diffraction (GD) from classical to computational by using self-interferometer-assisted measurement of field correlation functions rather than intensity correlation functions. More than simply “seeing” the diffraction pattern of an unknown complex volume object with single-point detectors, CH-GD can retrieve the diffracted light field’s complex amplitude and can thus digitally refocus to any depth in the optical link. Moreover, CH-GD has the potential to obtain the multimodal information including intensity, phase, depth, polarization, and/or color in a more compact and lensless manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.