The genus Enterovirus (EV) of the family Picornaviridae includes poliovirus, coxsackieviruses, echoviruses, numbered enteroviruses and rhinoviruses. These diverse viruses cause a variety of diseases, including non-specific febrile illness, hand-foot-and-mouth disease, neonatal sepsis-like disease, encephalitis, paralysis and respiratory diseases. In recent years, several non-polio enteroviruses (NPEVs) have emerged as serious public health concerns. These include EV-A71, which has caused epidemics of hand-foot-and-mouth disease in Southeast Asia, and EV-D68, which recently caused a large outbreak of severe lower respiratory tract disease in North America. Infections with these viruses are associated with severe neurological complications. For decades, most research has focused on poliovirus, but in recent years, our knowledge of NPEVs has increased considerably. In this Review, we summarize recent insights from enterovirus research with a special emphasis on NPEVs. We discuss virion structures, host-receptor interactions, viral uncoating and the recent discovery of a universal enterovirus host factor that is involved in viral genome release. Moreover, we briefly explain the mechanisms of viral genome replication, virion assembly and virion release, and describe potential targets for antiviral therapy. We reflect on how these recent discoveries may help the development of antiviral therapies and vaccines.
Chikungunya virus nonstructural protein nsP3 has an essential but unknown role in alphavirus replication and interacts with Ras-GAP SH3 domain-binding protein (G3BP). Here we describe the first known function of nsP3, to inhibit stress granule assembly by recruiting G3BP into cytoplasmic foci. A conserved SH3 domain-binding motif in nsP3 is essential for both nsP3-G3BP interactions and viral RNA replication. This study reveals a novel role for nsP3 as a regulator of the cellular stress response.
he COVID-19 pandemic, caused by SARS-CoV-2, has resulted in a worldwide health crisis 1 and few effective drugs are available to treat patients with COVID-19. Although remdesivir initially seemed promising for severe cases 2 , the World Health Organization's Solidarity trial showed that it has no definite impact on mortality 3. Dexamethasone can reduce mortality by a third among critically ill patients with COVID-19, by suppressing the hyperactive immune response 4. However, as treatment benefits severe cases only to a limited extent, efficient and safe therapeutics are urgently required while awaiting the worldwide implementation of vaccines. Coronaviruses cause respiratory and intestinal infections in a broad range of mammals and birds. Seven human coronaviruses (HCoVs) are known, which probably all emerged as zoonoses from bats, mice or domestic animals 5. The four so-called 'common cold HCoVs'-229E, NL63, OC43 and HKU1-cause mild upper respiratory tract illnesses 6. In contrast, SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV) and the recently emerged SARS-CoV-2 are highly pathogenic and cause severe, potentially lethal respiratory infections. As numerous coronaviruses reside in animal reservoirs and interspecies transmission frequently occurs 5,7,8 , there is a constant risk of new pathogenic coronaviruses spreading into the human population, as exemplified by the recent SARS-CoV-2 pandemic. Nevertheless, our options to prevent or treat coronavirus infections remain limited. Hence, the development of broad-spectrum anti-coronavirus drugs could help not only to address the current high medical need, but also to quickly contain zoonotic events in the future. Common host factors essential for replication of multiple coronaviruses represent attractive targets for broad-spectrum antiviral drugs. To develop such drugs, it is crucial to understand which host factors coronaviruses require to infect a cell, because each step of the coronavirus replication cycle (receptor binding, endocytosis, fusion, viral protein translation, genome replication, virion assembly and release) may serve as a target for intervention. Although the entry step of coronaviruses has been relatively well characterized, the host-virus interplay in later steps of the viral life cycle remains largely elusive. For SARS-CoV-2, previous studies have shown that the protein angiotensin-converting enzyme 2 (ACE2) can serve as a receptor in Vero E6 cells 9 or in human cells overexpressing ACE2 (refs. 10-12). In addition, it was shown that the SARS-CoV-2 spike (S) can be primed for fusion by cellular proteases such as furin, transmembrane serine protease 2 (TMPRSS2) or cathepsin B or L, depending on the target cell type 10,13. In the present study, we performed a series of genome-wide CRISPR (clustered regularly interspaced short palindromic repeats)-based genetic screens to identify host factors required for SARS-CoV-2 and HCoV-229E infection. We identified phosphoinositide 3-kinase (PI3K) type 3 as a common host factor for SARS-CoV-2,...
Picornaviruses are a leading cause of human and veterinary infections that result in various diseases, including polio and the common cold. As archetypical non-enveloped viruses, their biology has been extensively studied. Although a range of different cell-surface receptors are bound by different picornaviruses, it is unclear whether common host factors are needed for them to reach the cytoplasm. Using genome-wide haploid genetic screens, here we identify the lipid-modifying enzyme PLA2G16 (refs 8, 9, 10, 11) as a picornavirus host factor that is required for a previously unknown event in the viral life cycle. We find that PLA2G16 functions early during infection, enabling virion-mediated genome delivery into the cytoplasm, but not in any virion-assigned step, such as cell binding, endosomal trafficking or pore formation. To resolve this paradox, we screened for suppressors of the ΔPLA2G16 phenotype and identified a mechanism previously implicated in the clearance of intracellular bacteria. The sensor of this mechanism, galectin-8 (encoded by LGALS8), detects permeated endosomes and marks them for autophagic degradation, whereas PLA2G16 facilitates viral genome translocation and prevents clearance. This study uncovers two competing processes triggered by virus entry: activation of a pore-activated clearance pathway and recruitment of a phospholipase to enable genome release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.