Severe COVID-19 pneumonia survivors often exhibit long-term pulmonary sequalae, but the underlying mechanisms or associated local and systemic immune correlates are not known. Here, we have performed high-dimensional characterization of the pathophysiological and immune traits of aged COVID-19 convalescents, and correlated the local and systemic immune profiles with pulmonary function and lung imaging. We found that chronic lung impairment was accompanied by persistent respiratory immune alterations. We showed that functional SARS-CoV-2-specific memory T and B cells were enriched at the site of infection compared to those of blood. Detailed evaluation of the lung immune compartment revealed dysregulated respiratory CD8 + T cell responses were associated with the impaired lung function following acute COVID-19. Single cell transcriptomic analysis identified the potential pathogenic subsets of respiratory CD8 + T cells contributing to persistent tissue conditions following COVID-19. Our results have revealed pathophysiological and immune traits that may support the development of lung sequelae following SARS-CoV-2 pneumonia in older individuals, with implications for the treatment of chronic COVID-19 symptoms.
Returning astronauts have experienced altered immune function and increased vulnerability to infection during spaceflights dating back to Apollo and Skylab. Lack of immune response in microgravity occurs at the cellular level. We analyzed differential gene expression to find gravity-dependent genes and pathways. We found inhibited induction of 91 genes in the simulated freefall environment of the random positioning machine. Altered induction of 10 genes regulated by key signaling pathways was verified using real-time RT-PCR. We discovered that impaired induction of early genes regulated primarily by transcription factors NF-kappaB, CREB, ELK, AP-1, and STAT after crosslinking the T-cell receptor contributes to T-cell dysfunction in altered gravity environments. We have previously shown that PKA and PKC are key early regulators in T-cell activation. Since the majority of the genes were regulated by NF-kappaB, CREB, and AP-1, we studied the pathways that regulated these transcription factors. We found that the PKA pathway was down-regulated in vg. In contrast, PI3-K, PKC, and its upstream regulator pLAT were not significantly down-regulated by vectorless gravity. Since NF-kappaB, AP-1, and CREB are all regulated by PKA and are transcription factors predicted by microarray analysis to be involved in the altered gene expression in vectorless gravity, the data suggest that PKA is a key player in the loss of T-cell activation in altered gravity.
This study tested the hypothesis that transcription of immediate early genes is inhibited in T cells activated in μg. Immunosuppression during spaceflight is a major barrier to safe, long-term human space habitation and travel. The goals of these experiments were to prove that μg was the cause of impaired T cell activation during spaceflight, as well as understand the mechanisms controlling early T cell activation. T cells from four human donors were stimulated with Con A and anti-CD28 on board the ISS. An on-board centrifuge was used to generate a 1g simultaneous control to isolate the effects of μg from other variables of spaceflight. Microarray expression analysis after 1.5 h of activation demonstrated that μg- and 1g-activated T cells had distinct patterns of global gene expression and identified 47 genes that were significantly, differentially down-regulated in μg. Importantly, several key immediate early genes were inhibited in μg. In particular, transactivation of Rel/NF-κB, CREB, and SRF gene targets were down-regulated. Expression of cREL gene targets were significantly inhibited, and transcription of cREL itself was reduced significantly in μg and upon anti-CD3/anti-CD28 stimulation in simulated μg. Analysis of gene connectivity indicated that the TNF pathway is a major early downstream effector pathway inhibited in μg and may lead to ineffective proinflammatory host defenses against infectious pathogens during spaceflight. Results from these experiments indicate that μg was the causative factor for impaired T cell activation during spaceflight by inhibiting transactivation of key immediate early genes.
Effective vaccines inducing lifelong protection against many important infections such as respiratory syncytial virus (RSV), HIV, influenza virus, and Epstein-Barr virus (EBV) are not yet available despite decades of research. As an alternative to a protective vaccine, we developed a genetic engineering strategy in which CRISPR-Cas9 was used to replace endogenously encoded antibodies with antibodies targeting RSV, HIV, influenza virus, or EBV in primary human B cells. The engineered antibodies were expressed efficiently in primary B cells under the control of endogenous regulatory elements, which maintained normal antibody expression and secretion. Using engineered mouse B cells, we demonstrated that a single transfer of B cells engineered to express an antibody against RSV resulted in potent and durable protection against RSV infection in RAG1-deficient mice. This approach offers the opportunity to achieve sterilizing immunity against pathogens for which traditional vaccination has failed to induce or maintain protective antibody responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.