The Community Atmosphere Model (CAM) version 5 includes a spectral element dynamical core option from NCAR's High-Order Method Modeling Environment. It is a continuous Galerkin spectral finite element method designed for fully unstructured quadrilateral meshes. The current configurations in CAM are based on the cubedsphere grid. The main motivation for including a spectral element dynamical core is to improve the scalability of CAM by allowing quasi-uniform grids for the sphere that do not require polar filters. In addition, the approach provides other state-of-the-art capabilities such as improved conservation properties. Spectral elements are used for the horizontal discretization, while most other aspects of the dynamical core are a hybrid of well tested techniques from CAM's finite volume and global spectral dynamical core options. Here we first give a overview of the spectral element dynamical core as used in CAM. We then give scalability and performance results from CAM running with three different dynamical core options within the Community Earth System Model, using a pre-industrial time-slice configuration. We focus on high resolution simulations, using 1/4 degree, 1/8 degree, and T341 spectral truncation horizontal grids.
An overview is presented of the GLENS project, a community-wide effort enabling analyses of global and regional changes from stratospheric aerosol geoengineering in the presence of internal climate variability. CESM1(WACCM) STRATOSPHERIC AEROSOL GEOENGINEERING LARGE ENSEMBLE PROJECTSimone TilmeS, Jadwiga H. RicHTeR, Ben KRaviTz, douglaS g. macmaRTin, micHael J. millS, iSla R. SimpSon, anne S. glanville, JoHn T. FaSullo, adam S. pHillipS, Jean-FRancoiS lamaRque, JoSepH TRiBBia, Jim edwaRdS, SHeRi micKelSon, and SiddHaRTHa gHoSH S olar geoengineering using stratospheric sulfate aerosols has been discussed as a potential means of deliberately offsetting some of the effects of climate change (Crutzen 2006). Various model studies have demonstrated that reducing incoming solar radiation globally can offset the increase in global average surface temperature associated with increasing greenhouse gases (e.g., Kravitz et al. 2013). Despite the stabilization of global surface temperature, these simulations show significant changes in atmospheric conditions with global solar reductions or stratospheric sulfur or aerosol injections. Side effects in these simulations include "overcooling" of the tropics and "undercooling" of the poles, leading to continued Arctic summer sea ice loss (e.g., Moore et al. 2014;Tilmes et al. 2016). Additionally, the slowing of the hydrological cycle (e.g., Schmidt et al. 2012) and the potentially uneven cooling between the two hemispheres resulting from solar geoengineering can lead to shifts in precipitation patterns (Haywood et al. 2013; Jones et al. 2017) and reductions in monsoon precipitation (Tilmes et al. 2013). Many available model results to date are based on an artificial design intended to explore the impact of large forcing effects through global solar dimming. For other experiments, only a few ensemble members are performed, making it difficult to identify the robustness of regional climate effects.Simulations of stratospheric sulfate aerosol geoengineering inject sulfur dioxide (SO 2 ) into the stratosphere that oxidizes to form sulfate aerosols or they use direct injections of sulfate aerosols. These experiments require model capabilities beyond those in solar reduction simulations. The stratospheric aerosol distribution resulting from such injections depends on the model's aerosol microphysical scheme, as well as interactions with chemical, dynamical, and radiative processes (Pitari et al. 2014;Mills et al. 2017). Aerosol size and sedimentation are increased with the injection amount and the efficiency of the sulfates to affect the top of the atmosphere radiative imbalance is reduced (Niemeier and Timmreck 2015;Kleinschmitt et al. 2017). The warming of the tropical stratosphere in response to the enhanced aerosol burden results in circulation changes in the stratosphere with potential effects 2361NOVEMBER 2018 AMERICAN METEOROLOGICAL SOCIETY | on the quasi-biennial oscillation (QBO; Aquila et al. 2014), as well as impacts on the tropospheric circulation (Richter et al. 2018). Chan...
Abstract. While climate change mitigation targets necessarily concern maximum mean state changes, understanding impacts and developing adaptation strategies will be largely contingent on how climate variability responds to increasing anthropogenic perturbations. Thus far Earth system modeling efforts have primarily focused on projected mean state changes and the sensitivity of specific modes of climate variability, such as the El Niño–Southern Oscillation. However, our knowledge of forced changes in the overall spectrum of climate variability and higher-order statistics is relatively limited. Here we present a new 100-member large ensemble of climate change projections conducted with the Community Earth System Model version 2 over 1850–2100 to examine the sensitivity of internal climate fluctuations to greenhouse warming. Our unprecedented simulations reveal that changes in variability, considered broadly in terms of probability distribution, amplitude, frequency, phasing, and patterns, are ubiquitous and span a wide range of physical and ecosystem variables across many spatial and temporal scales. Greenhouse warming in the model alters variance spectra of Earth system variables that are characterized by non-Gaussian probability distributions, such as rainfall, primary production, or fire occurrence. Our modeling results have important implications for climate adaptation efforts, resource management, seasonal predictions, and assessing potential stressors for terrestrial and marine ecosystems.
Abstract. Climate simulation codes, such as the Community Earth System Model (CESM), are especially complex and continually evolving. Their ongoing state of development requires frequent software verification in the form of quality assurance to both preserve the quality of the code and instill model confidence. To formalize and simplify this previously subjective and computationally expensive aspect of the verification process, we have developed a new tool for evaluating climate consistency. Because an ensemble of simulations allows us to gauge the natural variability of the model's climate, our new tool uses an ensemble approach for consistency testing. In particular, an ensemble of CESM climate runs is created, from which we obtain a statistical distribution that can be used to determine whether a new climate run is statistically distinguishable from the original ensemble. The CESM ensemble consistency test, referred to as CESM-ECT, is objective in nature and accessible to CESM developers and users. The tool has proven its utility in detecting errors in software and hardware environments and providing rapid feedback to model developers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.