An automated process has been developed for the analysis of forensic casework samples using TECAN Genesis RSP 150/8 or Freedom EVO liquid handling workstations equipped exclusively with nondisposable tips. Robot tip cleaning routines have been incorporated strategically within the DNA extraction process as well as at the end of each session. Alternative options were examined for cleaning the tips and different strategies were employed to verify cross-contamination. A 2% sodium hypochlorite wash (1/5th dilution of the 10.8% commercial bleach stock) proved to be the best overall approach for preventing cross-contamination of samples processed using our automated protocol. The bleach wash steps do not adversely impact the short tandem repeat (STR) profiles developed from DNA extracted robotically and allow for major cost savings through the implementation of fixed tips. We have demonstrated that robotic workstations equipped with fixed pipette tips can be used with confidence with properly designed tip washing routines to process casework samples using an adapted magnetic bead extraction protocol.
Following implementation of our automated process incorporating the Promega DNA IQ system as a DNA extraction method, a large number of blood-containing exhibits failed to produce DNA. These exhibits had been tested with the Hemastix reagent strip, commonly used by police investigators and forensic laboratories as a screening test for blood. Some exhibits were even tainted green following transfer of the presumptive test reagents onto the samples. A series of experiments were carried out to examine the effect of the Hemastix chemistries on the DNA IQ system. Our results indicate that one or more chemicals imbedded in the Hemastix reagent strip severely reduce the ability to recover DNA from any suspected stain using the DNA IQ magnetic bead technology. The 3,3',5,5'-tetramethylbenzidine (TMB) used as the reporting dye appears to interact with the magnetic beads to prevent DNA recovery. Hydrogen peroxide does not seem to be involved. The Hemastix chemistries do not interfere in any way with DNA extraction performed using phenol-chloroform. The incompatibility of the Hemastix chemistries on the DNA IQ system forced us to adopt an indirect approach using filter paper to carry out the presumptive test.
R obotic liquid-handling stations (RLHSs) are the mainstay of high-throughput biomedical/forensic DNA sample processing facilities. These liquid-handling systems can be alternatively tooled with either disposable or fixed-tip pipetting heads. The use of disposable tips is often perceived as the best tip configuration to eliminate cross-contamination between biological samples processed on liquid-handling stations. However, this suppression can be effectively achieved on instruments equipped with fixed tips with optimally designed tip wash station (WS) configurations. Fixed-tip instruments offer many significant sample processing advantages with respect to precision, pipetting of liquids that may contain aggregates, and operational cost. This report discusses how cross-contamination suppression was achieved for the reliable processing of forensic casework samples on specially configured fixed-tip TECAN Genesis RSP/ Freedom EVO RLHSs. A critical analysis of the major components involved in tip washing, as well as the specifications of a redesigned tip-washing routine that increases wash effectiveness and significantly reduces processing time and cost is also presented. ( JALA 2007;12:339-54
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.