The Sloan Digital Sky Survey (SDSS) is an imaging and spectroscopic survey that will eventually cover approximately one-quarter of the celestial sphere and collect spectra of %10 6 galaxies, 100,000 quasars, 30,000 stars, and 30,000 serendipity targets. In 2001 June, the SDSS released to the general astronomical community its early data release, roughly 462 deg 2 of imaging data including almost 14 million detected objects and 54,008 follow-up spectra. The imaging data were collected in drift-scan mode in five bandpasses (u, g, r, i, and z); our 95% completeness limits for stars are 22.0, 22.2, 22.2, 21.3, and 20.5, respectively. The photometric calibration is reproducible to 5%, 3%, 3%, 3%, and 5%, respectively. The spectra are flux-and wavelength-calibrated, with 4096 pixels from 3800 to 9200 Å at R % 1800. We present the means by which these data are distributed to the astronomical community, descriptions of the hardware used to obtain the data, the software used for processing the data, the measured quantities for each observed object, and an overview of the properties of this data set.
We determine the number counts and z = 0-5 luminosity function for a well-defined, homogeneous sample of quasars from the Sloan Digital Sky Survey (SDSS). We conservatively define the most uniform statistical sample possible, consisting of 15,343 quasars within an effective area of 1622 deg 2 that was derived from a parent sample of 46,420 spectroscopically confirmed broad-line quasars in the 5282 deg 2 of imaging data from SDSS Data Release Three. The sample extends from i = 15 to i = 19.1 at z 3 and to i = 20.2 for z 3. The number counts and luminosity function agree well with the results of the Two-Degree Field QSO Redshift Survey (2QZ) at redshifts and luminosities where the SDSS and 2QZ quasar samples overlap, but the SDSS data probe to much higher redshifts than does the 2QZ sample. The number density of luminous quasars peaks between redshifts 2 and 3, although uncertainties in the selection function in this range do not allow us to determine the peak redshift more precisely. Our best fit model has a flatter bright end slope at high redshift than at low redshift. For z < 2.4 the data are best fit by a redshift-independent slope of β = −3.1 (Φ(L) ∝ L β ). Above z = 2.4 the slope flattens with redshift to β −2.37 at z = 5. This slope change, which is significant at the 5-sigma level, must be accounted for in models of the evolution of accretion onto supermassive black holes.
We present the fifth edition of the Sloan Digital Sky Survey (SDSS) Quasar Catalog, which is based upon the SDSS Seventh Data Release. The catalog, which contains 105,783 spectroscopically confirmed quasars, represents the conclusion of the SDSS-I and SDSS-II quasar survey. The catalog consists of the SDSS objects that have luminosities larger than M i = −22.0 (in a cosmology with H 0 = 70 km s −1 Mpc −1 , Ω M = 0.3, and Ω Λ = 0.7), have at least one emission line with FWHM larger than 1000 km s −1 or have interesting/complex absorption features, are fainter than i ≈ 15.0, and have highly reliable redshifts. The catalog covers an area of ≈ 9380 deg 2 . The quasar redshifts range from 0.065 to 5.46, with a median value of 1.49; the catalog includes 1248 quasars at redshifts greater than four, of which 56 are at redshifts greater than five. The catalog contains 9210 quasars with i < 18; slightly over half of the entries have i < 19. For each object the catalog presents positions accurate to better than 0.1 ′′ rms per coordinate, five-band (ugriz) CCD-based photometry with typical accuracy of 0.03 mag, and information on the morphology and selection method. The catalog also contains radio, near-infrared, and X-ray emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra cover the wavelength region 3800-9200Å at a spectral resolution of ≃ 2000; the spectra can be retrieved from the SDSS public database using the information provided in the catalog. Over 96% of the objects in the catalog were discovered by the SDSS. We also include a supplemental list of an additional 207 quasars with SDSS spectra whose archive photometric information is incomplete.
With the Sixth Data Release of the Sloan Digital Sky Survey, the imaging of the Northern Galactic Cap is now complete. The survey contains images and parameters of roughly 287 million objects over 9583 deg^2, and 1.27 million spectra of stars, galaxies, quasars and blank sky (for sky subtraction) selected over 7425 deg^2. This release includes much more extensive stellar spectroscopy than previously, and also includes detailed estimates of stellar temperatures, gravities, and metallicities. The results of improved photometric calibration are now available, with uncertainties of roughly 1% in g, r, i, and z, and 2% in u, substantially better than the uncertainties in previous data releases. The spectra in this data release have improved wavelength and flux calibration, especially in the extreme blue and extreme red, leading to the qualitatively better determination of stellar types and radial velocities. The spectrophotometric fluxes are now tied to point spread function magnitudes of stars rather than fiber magnitudes, giving a 0.35 mag change in the spectrophotometric flux scale. Systematic errors in the velocity dispersions of galaxies have been fixed, and the results of two independent codes for determining spectral classifications and redshifts are made available. (Abridged)Comment: 21 pages with 8 color figures. ApJS, in press. Minor modifications from previous versio
The Sloan Digital Sky Survey has validated and made publicly available its Second Data Release. This data release consists of 3324 square degrees of five-band (u g r i z) imaging data with photometry for over 88 million unique objects, 367,360 spectra of galaxies, quasars, stars and calibrating blank sky patches selected over 2627 degrees of this area, and tables of measured parameters from these data. The imaging data reach a depth of r ~ 22.2 (95% completeness limit for point sources) and are photometrically and astrometrically calibrated to 2% rms and 100 milli-arcsec rms per coordinate, respectively. The imaging data have all been processed through a new version of the SDSS imaging pipeline, in which the most important improvement since the last data release is fixing an error in the model fits to each object. The result is that model magnitudes are now a good proxy for point spread function (PSF) magnitudes for point sources, and Petrosian magnitudes for extended sources. The spectroscopy extends from 3800 A to 9200 A at a resolution of 2000. The spectroscopic software now repairs a systematic error in the radial velocities of certain types of stars, and has substantially improved spectrophotometry. All data included in the SDSS Early Data Release and First Data Release are reprocessed with the improved pipelines, and included in the Second Data Release. The data are publically available as of 2004 March 15 via the web sites http://www.sdss.org/dr2 and http://skyserver.sdss.org .Comment: 24 pages, submitted to AJ. See ftp://ftp.astro.princeton.edu/strauss/sdss/dr2.ps for high-resolution figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.