The dramatic rise of data‐intensive workloads has revived application‐specific computational hardware for continuing speed and power improvements, frequently achieved by limiting data movement and implementing “in‐memory computation”. However, conventional complementary metal oxide semiconductor (CMOS) circuit designs can still suffer low power efficiency, motivating designs leveraging nonvolatile resistive random access memory (ReRAM), and with many studies focusing on crossbar circuit architectures. Another circuit primitive—content addressable memory (CAM)—shows great promise for mapping a diverse range of computational models for in‐memory computation, with recent ReRAM–CAM designs proposed but few experimentally demonstrated. Here, programming and control of memristors across an 86 × 12 memristor ternary CAM (TCAM) array integrated with CMOS are demonstrated, and parameter tradeoffs for optimizing speed and search margin are evaluated. In addition to smaller area, this memristor TCAM results in significantly lower power due to very low programmable conductance states, motivating CAM use in a wider range of computational applications than conventional TCAMs are confined to today. Finally, the first experimental demonstration of two computational models in memristor TCAM arrays is reported: regular expression matching in a finite state machine for network security intrusion detection and definable inexact pattern matching in a Levenshtein automata for genomic sequencing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.