Existing data regarding alcohol ethoxylate (AE) surfactants indicate that structures with greater than 20 ethoxylate (EO) units per molecule or with multibranched alkyl chains may not pass a ready biodegradability test. This could have important consequences for complying with regional regulatory requirements and for the potential risks these chemicals could present to the environment. We investigated the influence of chemical structure on the biodegradability of AEs with different alkyl chain branching and EO content. The AEs investigated were a multibranched AE (average, 18 EO), an oxo-AE (monobranched; average, 23 EO), and a linear AE of oleochemical origin (average, 40 EO). The aims of the present study were to assess the ready biodegradability of AEs with high EO content and to establish the mechanism or pathway by which biodegradation occurs for the oxo-AE. Biodegradation studies were conducted using standard test conditions (International Standards Organization 14593). Solid-phase extraction and liquid chromatography with electrospray mass spectrometry were used to detect profiles in both derivatized and underivatized extracts of samples. Derivatization with phthalic anhydride was used to improve ionization of the lower-ethoxylated AEs and free alcohol that were key indicators in the present study. All AEs were rapidly biodegraded, achieving more than 60% mineralization of parent material. Central fission was the predominant mechanism for the oxo-AE, as confirmed by identification of the oligomeric distribution and quantification of polyethylene glycol released during biodegradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.