Precipitation kinetics were investigated in select Fe, Ni, and Al alloys using a CALPHAD based precipitation model based on Langer-Schwartz theory. Thermodynamic and kinetic data are taken from commercially available CALPHAD software, but reliable interfacial energy data for precipitates needed for the calculations is often lacking. While models exist to approximate these interfacial energies, this study has focused on deriving more reliable estimates by comparison with experimental data. By performing simulations with thermal histories, nucleation sites, and precipitate morphologies that closely replicate experimental data found in literature, the interfacial energies were optimized until volume fraction and mean radius values closely matched the published data. Using this technique, interfacial energy values have been determined for carbides in Grade 22 low alloy steels, delta phase in Ni 625 and 718, SPhase in Al 2024, and Q’ and β’’ in Al 6111, and can be used for future predictive precipitation simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.