Pyrazinamide (PZA) is a prodrug that is converted to pyrazinoic acid by the enzyme pyrazinamidase, encoded by the pncA gene in Mycobacterium tuberculosis. Molecular identification of mutations in pncA offers the potential for rapid detection of pyrazinamide resistance (PZAr). However, the genetic variants are highly variable and scattered over the full length of pncA, complicating the development of a molecular test. We performed a large multicenter study assessing pncA sequence variations in 1,950 clinical isolates, including 1,142 multidrug-resistant (MDR) strains and 483 fully susceptible strains. The results of pncA sequencing were correlated with phenotype, enzymatic activity, and structural and phylogenetic data. We identified 280 genetic variants which were divided into four classes: (i) very high confidence resistance mutations that were found only in PZAr strains (85%), (ii) high-confidence resistance mutations found in more than 70% of PZAr strains, (iii) mutations with an unclear role found in less than 70% of PZAr strains, and (iv) mutations not associated with phenotypic resistance (10%). Any future molecular diagnostic assay should be able to target and identify at least the very high and high-confidence genetic variant markers of PZAr; the diagnostic accuracy of such an assay would be in the range of 89.5 to 98.8%.
Utilizing the wild-type MIC distribution was found to be as useful in M. tuberculosis as in other bacteria when setting clinical breakpoints. We suggest that the present clinical breakpoints should be re-evaluated, taking into account wild-type MIC distributions and available pharmacokinetic data.
Thirty-four pyrazinamide-resistant and 37 pyrazinamide-susceptible Mycobacterium tuberculosis complex strains were analyzed for pncA gene mutations. None of the sensitive strains had any mutations, apart from silent mutations, whereas all but one resistant strain showed pncA mutations. By using sequencing as a means of early resistance detection, the inconsistency of phenotypic pyrazinamide assays can be circumvented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.