Hypercholesterolemia is one of the modifiable and primary risk factors for cardiovascular diseases (CVD). Emerging evidence suggests the stimulation of transintestinal cholesterol excretion (TICE), the nonbiliary cholesterol excretion, using natural products can be an effective way to reduce CVD. Bilberry (Vaccinium myrtillus L.) has been reported to have cardioprotective effects by ameliorating oxidative stress, inflammation, and dyslipidemia. However, the role of bilberry in intestinal cholesterol metabolism is not well understood. To examine the effects of bilberry in intestinal cholesterol metabolism, we measured the genes for cholesterol flux and de novo synthesis in anthocyanin-rich bilberry extract (BE)-treated Caco-2 cells. BE significantly decreased the genes for cholesterol absorption, i.e., Niemann-Pick C1 Like 1 and ATP-binding cassette transporter A1 (ABCA1). In contrast, BE significantly upregulated ABCG8, the apical transporter for cholesterol. There was a significant induction of low-density lipoprotein receptors, with a concomitant increase in cellular uptake of cholesterol in BE-treated cells. The expression of genes for lipogenesis and sirtuins was altered by BE treatment. In the present study, BE altered the genes for cholesterol flux from basolateral to the apical membrane of enterocytes, potentially stimulating TICE. These results support the potential of BE in the prevention of hypercholesterolemia.
Bilberry (Vaccinium myrtillus L.), rich in polyphenols, has been claimed to have lipid-lowering effects, but its underlying mechanisms remain unclear. The effects of bilberry extract (BE) with antioxidant properties on hepatic lipid metabolism were investigated by measuring the genes for cholesterol biosynthesis and flux in HepG2 cells. The mRNA and protein levels of genes involved in cholesterol biosynthesis such as sterol regulatory element-binding protein 2 and 3-hydroxy-3-methylglutaryl coenzyme A reductase were decreased in BE-treated cells. BE posttranscriptionally upregulated low-density lipoprotein receptor in HepG2 cells. There was a marked reduction in genes for very low-density lipoprotein assembly by BE treatment. Furthermore, the expression of canalicular transporter for cholesterol and bile acids, such as ABCG8 and ABCB11, was significantly elevated by BE treatment. Downregulation of lipogenic genes and upregulation of fatty acid oxidation-related genes were observed in BE-treated HepG2 cells. The expressions of sirtuins were altered by BE treatment. These results support that the effects of BE on hepatic cholesterol metabolism may be attributed to the regulation of genes for hepatic cholesterol biosynthesis, transport and efflux.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.