This work proposes a highly efficient sensorless motor driver chip for various permanent-magnet synchronous motors (PMSMs) in a wide power range. The motor driver chip is composed of two important parts. The digital part is a sensorless controller consisting mainly of an angle estimation block and a speed control block. The analog part consists of a gate driver, which is able to sense the phase current of a motor. The sensorless algorithms adapted in this paper include a sliding mode observer (SMO) method that has high robust characteristics regarding parameter variations of PMSMs. Fabricated SMO chips detect back electromotive force signals. Furthermore, motor current-sensing blocks are included with a 10-bit successive approximation analog-to-digital converter and various gain current amplifiers for proper sensorless operations. Through a fabricated SMO chip, we were able to demonstrate rated powers of 32 W, 200 W, and 1,500 W.Keywords: Wide power range of motors, sensorless speed control, sliding mode observer driver IC, integrated gate driver.
This paper proposes a fully sensorless driver for a permanent magnet synchronous motor (PMSM) integrated with a digital motor controller and an analog pre‐driver, including sensing circuits and estimators. In the motor controller, a position estimator estimates the back electromotive force and rotor position using a sliding‐mode observer. In the pre‐driver, drivers for the power devices are designed with a level shifter and isolation technique. In addition, a current sensing circuit measures a three‐phase current. All of these circuits are integrated in a single chip such that the driver achieves control of the speed with high accuracy. Using an IC fabricated using a 0.18 μm BCDMOS process, the performance was verified experimentally. The driver showed stable operation in spite of the variation in speed and load, a similar efficiency near 1% compared to a commercial driver, a low speed error of about 0.1%, and therefore good performance for the PMSM drive.
This paper presents an advanced sensorless permanent magnet (PM) brushless motor controller integrated circuit (IC) employing an automatic lead‐angle compensator. The proposed IC is composed of not only a sensorless sine‐wave motor controller but also an isolated gate‐driver and current self‐sensing circuit. The fabricated IC operates in sensorless mode using a position estimator based on a sliding mode observer and an open‐loop start‐up. For high efficiency PM brushless motor driving, an automatic lead‐angle control algorithm is employed, which improves the efficiency of a PM brushless motor system by tracking the minimum copper loss under various load and speed conditions. The fabricated IC is evaluated experimentally using a commercial 200 W PM brushless motor and power switches. The proposed IC is successfully operated without any additional sensors, and the proposed algorithm maintains the minimum current and maximum system efficiency under 0 N·m to 0.8 N·m load conditions. The proposed IC is a feasible sensorless speed controller for various applications with a wide range of load and speed conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.