Motivation: Clustering of protein–protein interaction networks is one of the most common approaches for predicting functional modules, protein complexes and protein functions. But, how well does clustering perform at these tasks?Results: We develop a general framework to assess how well computationally derived clusters in physical interactomes overlap functional modules derived via the Gene Ontology (GO). Using this framework, we evaluate six diverse network clustering algorithms using Saccharomyces cerevisiae and show that (i) the performances of these algorithms can differ substantially when run on the same network and (ii) their relative performances change depending upon the topological characteristics of the network under consideration. For the specific task of function prediction in S.cerevisiae, we demonstrate that, surprisingly, a simple non-clustering guilt-by-association approach outperforms widely used clustering-based approaches that annotate a protein with the overrepresented biological process and cellular component terms in its cluster; this is true over the range of clustering algorithms considered. Further analysis parameterizes performance based on the number of annotated proteins, and suggests when clustering approaches should be used for interactome functional analyses. Overall our results suggest a re-examination of when and how clustering approaches should be applied to physical interactomes, and establishes guidelines by which novel clustering approaches for biological networks should be justified and evaluated with respect to functional analysis.Contact: msingh@cs.princeton.eduSupplementary information: Supplementary data are available at Bioinformatics online.
BackgroundPiwi-interacting RNAs (piRNAs) are a recently discovered class of small non-coding RNAs whose best-understood function is to repress mobile element (ME) activity in animal germline. To date, nearly all piRNA studies have been conducted in model organisms and little is known about piRNA diversity, target specificity and biological function in human.ResultsHere we performed high-throughput sequencing of piRNAs from three human adult testis samples. We found that more than 81% of the ~17 million putative piRNAs mapped to ~6,000 piRNA-producing genomic clusters using a relaxed definition of clusters. A set of human protein-coding genes produces a relatively large amount of putative piRNAs from their 3’UTRs, and are significantly enriched for certain biological processes, suggestive of non-random sampling by the piRNA biogenesis machinery. Up to 16% of putative piRNAs mapped to a few hundred annotated long non-coding RNA (lncRNA) genes, suggesting that some lncRNA genes can act as piRNA precursors. Among major ME families, young families of LTR and endogenous retroviruses have a greater association with putative piRNAs than other MEs. In addition, piRNAs preferentially mapped to specific regions in the consensus sequences of several ME (sub)families and some piRNA mapping peaks showed patterns consistent with the “ping-pong” cycle of piRNA targeting and amplification.ConclusionsOverall our data provide a comprehensive analysis and improved annotation of human piRNAs in adult human testes and shed new light into the relationship of piRNAs with protein-coding genes, lncRNAs, and mobile genetic elements in human.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-545) contains supplementary material, which is available to authorized users.
Mutator phenotype tumors provide unique opportunities to unravel malignant progression because of various gene alterations acquired during clonal tumor evolution. Gastric carcinomas, which have been known to show frequent genetic instability, would be composed of initial gene alterations shared by most tumor areas and subsequent alterations restricted to particular tumor sites. To analyse the timing of genetic events, we examined separate sites of tumor tissue obtained from a given gastric carcinoma patient with microsatellite instability (MSI). Our study included 95 normal/tumor area pairs from 25 patients. Six of the 25 patients (24%) demonstrated various levels of MSI ranging from 7% (two of 30) to 97% (28 of 29) of markers tested in multiple tumor sites. Of the six patients, ®ve manifested frameshift mutations in a tract of ten deoxyadenosines within transforming growth factor b receptor type II and four demonstrated frameshift mutations in a tract of eight deoxyguanosines within BAX. These mutations were common to all tumor sites regardless of the various level of MSI phenotype, indicating initial events. Two of the six patients exhibited frameshift mutations in mononucleotide repeats of mismatch repair genes, hMSH3 and hMSH6, and the insulin-like growth factor II receptor in restricted tumor areas, indicating additional alterations. Insulin-like growth factor II receptor mutations appear to be caused by hMSH3 and hMSH6 mutations because the former mutations were con®ned to tumor portions with the latter two mismatch repair lesions. These results provide genetic progression evidence for gastric carcinomas of the mutator pathway. In this pathway, mismatch repair insuciency initially targets mononucleotide tracts of transforming growth factor b receptor type II and BAX. During tumorigenesis, primary mismatch repair failure may give rise to the secondary mismatch repair lesions, frameshift mutations of hMSH3 and hMSH6, which result in another tumorigenic mutation in the insulin-like growth factor II receptor.
Transposable elements (TEs) are one of the most important features of genome architecture, so their evolution and relationship with host defense mechanisms have been topics of intense study, especially in model systems such as Drosophila melanogaster. Recently, a novel small RNA-based defense mechanism in animals called the Piwi-interacting RNA (piRNA) pathway was discovered to form an adaptive defense mechanism against TEs. To investigate the relationship between piRNA and TE content between strains of a species, we sequenced piRNAs from 16 inbred lines of D. melanogaster from the Drosophila Genetic Reference Panel. Instead of a global correlation of piRNA expression and TE content, we found evidence for a host response through de novo piRNA production from novel TE insertions. Although approximately 20% of novel TE insertions induced de novo piRNA production, the abundance of de novo piRNAs was low and did not markedly affect the global pool of ovarian piRNAs. Our results provide new insights into the evolution of TEs and the piRNA system in an important model organism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.