Oncogenic tyrosine kinases have proven to be promising targets for the development of highly effective anticancer drugs. However HER family tyrosine kinase inhibitors (TKIs) show only limited activity against HER2-driven cancers despite effective inhibition of EGFR and HER2 in vivo 1–8. The reasons for this are unclear. Signaling in trans is a key feature of this multimember family and the critically important PI3K/Akt pathway is driven predominantly through transphosphorylation of the kinase-inactive HER3 9,10. We report that HER3 and consequently PI3K/Akt signaling evade inhibition by current HER family TKIs in vitro and in tumors in vivo. This is due to a compensatory shift in HER3 phosphorylation-dephosphorylation equilibrium driven by increased membrane HER3 expression driving the phosphorylation reaction and reduced HER3 phosphatase activity impeding the dephosphorylation reaction. These compensatory changes are driven by Akt mediated negative feedback signaling. Although HER3 is not a direct target of TKIs, HER3 substrate resistance undermines their efficacy and has thus far gone undetected. The experimental abbrogation of HER3 resistance by siRNA knockdown restores potent pro-apoptotic effects to otherwise cytostatic HER TKIs, re-affirming the oncogene-addicted nature of HER2-driven tumors and the therapeutic promise of this oncoprotein target. However, since HER3 signaling is buffered against an incomplete inhibition of HER2 kinase, much more potent TKIs or combination strategies are required to effectively silence oncogenic HER2 signaling. The biologic marker to guide HER TKIs should be the transphosphorylation of HER3.
The clinical success of multitargeted kinase inhibitors has stimulated efforts to identify promiscuous drugs with optimal selectivity profiles. It remains unclear to what extent such drugs can be rationally designed, particularly for combinations of targets that are structurally divergent. Here we report the systematic discovery of molecules that potently inhibit both tyrosine kinases and PI3-Ks, two protein families that are among the most intensely pursued cancer drug targets. Through iterative chemical synthesis, X-ray crystallography, and kinome-level biochemical profiling, we identify compounds that inhibit a spectrum of novel target combinations in these two families. Crystal structures reveal that the dual selectivity of these molecules is controlled by a hydrophobic pocket conserved in both enzyme classes and accessible through a rotatable bond in the drug skeleton. We show that one compound, PP121, blocks the proliferation of tumor cells by direct inhibition of oncogenic tyrosine kinases and PI3-Ks. These molecules demonstrate the feasibility of accessing a chemical space that intersects two families of oncogenes.
About 25% of breast cancers harbor the amplified oncogene HER2 and are dependent on HER2 kinase function, identifying HER2 as a vulnerable target for therapy. However,. HER2-HER3 activation is buffered so that it is protected against a nearly two log inhibition of HER2 catalytic activity; this buffering is driven by the negative regulation of HER3 by Akt. We have now further characterized HER2-HER3 signaling activity and shown that the compensatory buffering prevents apoptotic tumor cell death from occurring as a result of the combined loss of MAPK and Akt signaling. To overcome the cancer cells' compensatory mechanisms, we co-administered a PI3K/ mTor inhibitor and a HER2 tyrosinc kinase inhibitor. This treatment strategy proved suboptimal because it induced both tyrosine kinase inhibitor sensitizing and desensitizing effects and robust cross-compensation of MAPK and Akt signaling pathways. Noting that HER2-HER3 activity was completely inhibited by higher, fully inactivating doses of TKI, we then attempted to overcome the cells compensatory buffering with this higher dose. This treatment crippled all downstream signaling and induced tumor apoptosis. Although such high doses of TKI are toxic in vivo when given continuously, we found that intermittent doses of TKI administered to mice produced sequential cycles of tumor apoptosis and ultimately complete tumor regression in mouse models, with much less toxicity. This strategy for inactivation of HER2-HER3 tumorigenic activity is proposed for clinical testing.
As key components in nearly every signal transduction pathway, protein kinases are attractive targets for the regulation of cellular signaling by small-molecule inhibitors. We report the structure-guided development of 6-acrylamido-4-anilinoquinazoline irreversible kinase inhibitors that potently and selectively target rationally designed kinases bearing two selectivity elements that are not found together in any wild-type kinase: an electrophile-targeted cysteine residue and a glycine gatekeeper residue. Cocrystal structures of two irreversible quinazoline inhibitors bound to either epidermal growth factor receptor (EGFR) or engineered c-Src show covalent inhibitor binding to the targeted cysteine (Cys797 in EGFR and Cys345 in engineered c-Src). To accommodate the new covalent bond, the quinazoline core adopts positions that are different from those seen in kinase structures with reversible quinazoline inhibitors. Based on these structures, we developed a fluorescent 6-acrylamido-4-anilinoquinazoline affinity probe to report the fraction of kinase necessary for cellular signaling, and we used these reagents to quantitate the relationship between EGFR stimulation by EGF and its downstream outputs-Akt, Erk1 and Erk2.
All cells must integrate sensory information to coordinate developmental events in space and time. The bacterium Caulobacter crescentus uses two-component phospho-signalling to regulate spatially distinct cell cycle events through the master regulator CtrA. Here, we report that CckA, the histidine kinase upstream of CtrA, employs a tandem-PAS domain sensor to integrate two distinct spatiotemporal signals. Using CckA reconstituted on liposomes, we show that one PAS domain modulates kinase activity in a CckA density-dependent manner, mimicking the stimulation of CckA kinase activity that occurs on its transition from diffuse to densely packed at the cell poles. The second PAS domain interacts with the asymmetrically partitioned second messenger cyclic-di-GMP, inhibiting kinase activity while stimulating phosphatase activity, consistent with the selective inactivation of CtrA in the incipient stalked cell compartment. The integration of these spatially and temporally regulated signalling events within a single signalling receptor enables robust orchestration of cell-type-specific gene regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.