Successful viral load programs rely on the presence of data systems and high quality of patient data. Using a cohort of 49 patients at Partners in Hope, a large, urban HIV clinic in Malawi, we performed a quality improvement assessment of a new viral load program with a focus on accuracy of data collected from patients as well as adherence to Malawi HIV Guidelines in regard to response to elevated viral loads (≥1,000 copies/mL). Data were obtained from three parallel medical record systems to investigate the proportion of patients with a repeat viral load and whether the three data systems agreed in regard to sociodemographic and clinical data. Fewer than 30% of patients had a repeat viral load within six months, as recommended in the Malawi HIV Guidelines. There were significant problems with data agreement across the three parallel databases used for care. Date of birth was consistent for 55.1% (N=27) of patients, while a different date of birth was noted in all three sources for 10.2% of pateints (N=1). For 65.3% (N=32), the viral load from the laboratory did not match the recorded viral load in the electronic or paper record. Scale-up of viral load monitoring must be accompanied by the development of data systems that support workflow from sample collection to lab and back to provider. Education of providers and strategies for data collection with minimal errors can facilitate scale-up of high quality programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.