Trophectoderm (TE) biopsy and DNA microarray have become the new technologies for preimplantation genetic diagnosis in humans. In this study, we comprehensively examined aneuploid formation in human blastocysts produced in vitro with microarray and investigated the clinical outcome after transfer of euploid embryos. Biopsied cells from either TE or inner cell mass (ICM) were processed for microarray to examine the errors in 23 pairs of chromosomes and the consistency between TE and ICM. It was found that 56.6% of blastocysts were aneuploid. Further analysis indicated that 62.3% of aneuploid blastocysts had single and 37.7% had multiple chromosomal abnormalities. Chromosome errors could occur in any chromosome, but errors in chromosome 21 accounted for the most (11.3%) among the 23 pairs of chromosomes. Transfer of array-screened blastocysts produced high pregnancy (70.2%) and implantation (63.5%) rates. Microarray of TE and ICM cells in the same blastocysts revealed that high proportions of aneuploid blastocysts (69.2%) were mosaic, including aneuploid TE and euploid ICM, inconsistent anomalies between ICM and TE, or euploid TE cells and aneuploid ICM in the same blastocyst. These results indicate that high proportions of human blastocysts produced in vitro from women of advanced maternal age are aneuploid and mosaic. Errors can occur in any of the 23 pairs of chromosomes in human blastocysts. Biopsy from TE in blastocysts does not exactly predict the chromosomal information in ICM if the embryos are aneuploid. Some mosaic blastocysts have euploid ICM, which may indicate important differentiate mechanism(s) of human preimplantation embryos.
A previous study comparing the performance of different platforms for DNA microarray found that the oligonucleotide (oligo) microarray platform containing 385K isothermal probes had the best performance when evaluating dosage sensitivity, precision, specificity, sensitivity and copy number variations border definition. Although oligo microarray platform has been used in some research fields and clinics, it has not been used for aneuploidy screening in human embryos. The present study was designed to use this new microarray platform for preimplantation genetic screening in the human. A total of 383 blastocysts from 72 infertility patients with either advanced maternal age or with previous miscarriage were analyzed after biopsy and microarray. Euploid blastocysts were transferred to patients and clinical pregnancy and implantation rates were measured. Chromosomes in some aneuploid blastocysts were further analyzed by fluorescence in-situ hybridization (FISH) to evaluate accuracy of the results. We found that most (58.1%) of the blastocysts had chromosomal abnormalities that included single or multiple gains and/or losses of chromosome(s), partial chromosome deletions and/or duplications in both euploid and aneuploid embryos. Transfer of normal euploid blastocysts in 34 cycles resulted in 58.8% clinical pregnancy and 54.4% implantation rates. Examination of abnormal blastocysts by FISH showed that all embryos had matching results comparing microarray and FISH analysis. The present study indicates that oligo microarray conducted with a higher resolution and a greater number of probes is able to detect not only aneuploidy, but also minor chromosomal abnormalities, such as partial chromosome deletion and/or duplication in human embryos. Preimplantation genetic screening of the aneuploidy by DNA microarray is an advanced technology used to select embryos for transfer and improved embryo implantation can be obtained after transfer of the screened normal embryos.
Purpose To examine the prevalence of aneuploidy in human blastocysts resulting from donated eggs and embryo implantation after transfer of normal euploid embryos. Also, to assess the necessity of preimplantation genetic screening (PGS) for embryos produced with donor eggs. Methods Blastocysts from donor-recipient cycles were biopsied for PGS (PGS group) and the samples were analyzed with DNA microarray. Euploid blastocysts were transferred to the recipients, and both clinical pregnancy and embryo implantation were examined and compared with embryos without PGS (control group). Results After PGS, 39.1 % of blastocysts were abnormal, including aneuploidy and euploid with partial chromosome deletion and/or duplication. Transfer of normal euploid blastocysts brought about 72.4 % of clinical pregnancy, 65.5 % of ongoing/delivery and 54.9 % of embryo implantation rates; these rates were slightly higher than those in the control group (66.7, 54.0 and 47.8 %, respectively), but there was no statistical difference between the two groups. By contrast, the miscarriage rate was higher in the control group (19.2 %) than in the PGS group (9.5 %), but no statistical difference was observed. Transfer of two or more embryos did not significantly increase the ongoing/delivery rates in both groups, but significantly increased the twin pregnancy rates (50.0 % in the PGS group and 43.8 % in the control group). Conclusion(s) High proportions of human blastocysts derived from donor eggs are aneuploid. Although pregnancy and embryo implantation rates were increased, and miscarriage rates were reduced by transfer of embryos selected by PGS, the efficiency was not significantly different as compared to the control, suggesting that PGS may be necessary only in some specific situations, such as single embryo transfer.
BackgroundSuccessful egg cryopreservation has many potential benefits to a variety of patients. However, a superior standard protocol describing all aspects of oocyte cryopreservation has not yet been identified. Oocyte cryopreservation is still a technical challenge for many infertility clinics. To maintain satisfactory clinical outcomes, there is a need to develop an easy to use, yet efficient laboratory protocol. The present study was designed to examine if human embryos resulting from eggs frozen with an optimized vitrification protocol have similar developmental competence as those from fresh eggs.MethodsTwenty recipients received donated eggs vitrified with a protocol in which short exposure time to the vitrification solution was used and 23 recipients received donated eggs and 6 patients had their own eggs vitrified with a modified protocol in which long exposure time to the vitrification solution was used. After warming, egg survival, fertilization, cleavage, blastocyst formation, clinical pregnancy and implantation rates were compared. The developmental competence of eggs vitrified with the optimized protocol was further compared with fresh eggs donated from the same donors.ResultsThere was no difference in the oocyte survival, fertilization, cleavage, clinical pregnancy or implantation rates between the short and long protocol groups. However, blastocyst formation rate was significantly (P < 0.001) higher in the long protocol group (50.8%) than that in short protocol group (26.5%), resulting in more blastocysts being transferred and frozen. When frozen eggs vitrified with long protocol and fresh eggs from the same donors (12) were compared in 39 recipients, no differences were observed in terms of fertilization (86.4 vs 80.1%), blastocyst formation (50.0 vs 59.2%), clinical pregnancy (63.2 vs 60.0%) and implantation (41.7 vs 44.7%) rates. Four out of 6 patients had ongoing pregnancy after transfer of embryos from their own frozen eggs with a 46.2% implantation rate.ConclusionsThese results indicate that blastocyst development is an appropriate measure for egg survival after cryopreservation and frozen eggs have similar developmental potential as fresh eggs if they are frozen with an optimized method.
BackgroundHigh proportions of human embryos produced by in vitro fertilization are aneuploidy and mosaic. DNA microarray is one of the most practical screening methods to select euploid embryos for transfer. However, mosaic pregnancy is still possible due to embryonic mosacism. Here we report a successful pregnancy after transfer of a mosaic blastocyst with euploid inner cell mass.MethodsA woman with a previous trisomy 13 pregnancy pursued infertility treatment with preimplantation genetic screening by a trophectoderm biopsy and DNA microarray. NimbleGen oligonucleotide DNA microarray was applied to biopsied samples from 13 blastocysts. A euploid blastocyst was transferred to the patient and subsequent prenatal cytogenetic tests were performed by FISH and/or G banding.ResultsFollowing DNA microarray, it was found that 5 blastocysts were euploid and 8 were aneuploidy. Transfer of one euploid blastocyst resulted in a clinical pregnancy. Prenatal cytogenetic tests of samples biopsied from chorionic villi sample showed both trisomy 21 (47 XX, +21) and euploid (46, XX) cells. Further prenatal cytogenetic test with a sample from amniotic fluid indicated that all cells were euploid (46, XX). The pregnancy was continued and a healthy girl was delivered after 41 weeks of gestation.ConclusionsThis is the first report to indicate a mosaic pregnancy after transfer of a “euploid” blastocyst that was screened by DNA microarray, and the case further confirms that mosaicism is present in human blastocysts produced by in vitro fertilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.