Seaweeds contain many valuable compounds that can be used in the food industry. Carrageenan is a polysaccharide which has been extracted from seaweed for centuries and is used as a texturizer in food and non-food products. However, seaweeds contain compounds other than carrageenan, such as proteins, which could also be extracted. This extraction should be done without compromising the industrial scale carrageenan extraction yield and quality. This study aimed at up-stream protein extraction from red seaweed Eucheuma denticulatum by using of an optimized enzyme-assisted extraction, including of an aqueous/enzymatic treatment followed by alkaline extraction, and then the commercial carrageenan extraction. The protein extraction efficiency of four enzymes was evaluated including Celluclast® 1.5L, Shearzyme® 500 L, Alcalase® 2.4 L FG and Viscozyme® L at a concentration of 0.0, 0.1, 0.2 and 0.4% (w/w). To avoid detrimental effects on carrageenan, all the experiments were performed at pH 7 at room temperature. The results showed that 0.2% w/w Alcalase® or Viscozyme® added individually achieved the highest protein extraction efficiencies (59 and 48%, respectively) at pH 7 and room temperature (p < 0.05). Determination of the most common carrageenan quality parameters indicated that using any of these enzymes had no negative effect on the carrageenan yield and quality.
Background
Fiber-rich feed components possess prebiotic potential to enhance pig health and are considered a potential solution to the high prevalence of post-weaning diarrhea in pig production under the phased suspension of antibiotics and zinc oxide use.
Methods
We screened the gut microbiota modulatory properties of pectin substrates prepared from sugar beet within the freshly weaned piglet gut microbiome using an in vitro colon model, the CoMiniGut. We focused on testing a variety (13) of sugar beet-derived pectin substrates with defined structures, as well as known prebiotics such as inulin, fructooligosaccharide (FOS) and galactooligosaccharide (GOS), to gain insights on the structure–function related properties of specific substrates on the weaner gut microbial composition as well as shortchain fatty acid production (SCFA).
Results
Sugar beet-derived pectin and rhamnogalacturonan-I selectively increased the relative abundance of Bacteroidetes, specifically Prevotella copri, Bacteroides ovatus, Bacteroides acidificiens, and an unclassified Bacteroides member. The degree of esterification impacted the relative abundance of these species and the SCFA production during the in vitro fermentations. Modified arabinans derived from sugar beet promoted the growth of Blautia, P. copri, Lachnospiraceae members and Limosilactobacillus mucosae and amongst all oligosaccharides tested yielded the highest amount of total SCFA produced after 24 h of fermentation. Sugar beet-derived substrates yielded higher total SCFA concentrations (especially acetic and propionic acid) relative to the known prebiotics inulin, FOS and GOS.
Conclusion
Our results indicate that the molecular structures of pectin, that can be prepared form just one plant source (sugar beet) can selectively stimulate different GM members, highlighting the potential of utilizing pectin substrates as targeted GM modulatory ingredients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.