The retina is a key sensory tissue composed of multiple layers of cell populations that work coherently to process and decode visual information. Mass spectrometry-based proteomics approach has allowed high-throughput, untargeted protein identification, demonstrating the presence of these proteins in the retina and their involvement in biological signalling cascades. The comprehensive wild-type mouse retina proteome was prepared using a novel sample preparation approach, the suspension trapping (S-Trap) filter, and further fractionated with high-pH reversed phase chromatography involving a total of 28 injections. This data-dependent acquisition (DDA) approach using a Sciex TripleTOF 6600 mass spectrometer identified a total of 7,122 unique proteins (1% FDR), and generated a spectral library of 5,950 proteins in the normal C57BL/6 mouse retina. Data-independent acquisition (DIA) approach relies on a large and high-quality spectral library to analyse chromatograms, this spectral library would enable access to SWATH-MS acquisition to provide unbiased, multiplexed, and quantification of proteins in the mouse retina, acting as the most extensive reference library to investigate retinal diseases using the C57BL/6 mouse model.
Myopia is an abnormal refractive status, explained by an excessive ocular lengthening mostly in posterior segments. Although growing evidence of anterior segments, specifically altered corneal geometries with biomechanical properties in myopes have been reported, the mechanism behind is poorly understood. We hereby prepared experimentally induced highly myopic chicks to investigate the molecular basis of corneal remodeling by applying a novel proteomic approach integrated with information dependent acquisition (IDA) and data independent quantification (SWATH-MS) analysis. As a result, differentially expressed protein biomarkers that might be involved in structural changes were screened based on the first of its kind unique chicken corneal proteome. All generated raw data from IDA and SWATH-MS are accessible at Peptide Atlas public repository (http://www.peptideatlas.org/PASS/PASS01410) for general release.
Atropine, a non-selective muscarinic antagonist, is known to slow down myopia progression in human adolescents and in several animal models. However, its underlying molecular mechanism is unclear. The present work built a monocular form-deprivation myopia (FDM) guinea pig model, using facemasks as well as atropine treatment on FDM eyes for 2 and 4 weeks. Retinal protein changes in response to the FDM and effects of topical administration of atropine were screened for the two periods using fractionated isobaric tags for a relative and absolute quantification (iTRAQ) approach coupled with nano-liquid chromatography-tandem mass spectrometry (nano-LC–MS/MS) (
n
=24, 48 eyes). Retinal tissues from another cohort receiving 4-weeks FDM with atropine treatment (
n
=12, 24 eyes) with more significant changes were subjected to sequential window acquisition of all theoretical mass spectra (SWATH-MS) proteomics for further protein target confirmation. A total of 1695 proteins (8875 peptides) and 5961 proteins (51871 peptides) were identified using iTRAQ and SWATH approaches, respectively. Using the Paragon algorithm in the ProteinPilot
TM
software, the three most significantly up-regulated and down-regulated proteins that were commonly found in both ITRAQ and SWATH experiments are presented. All raw data generated from the work were submitted and published in the Peptide Atlas public repository (
http://www.peptideatlas.org/
) for general release (Data ID PASS01507).
Gene expression of the chick retina was examined during the early development of lens-induced myopia (LIM) using whole transcriptome sequencing. Monocular treatment of the right eyes with −10 diopter (D)...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.