DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
In this work, the ATOM (intrinsic a-Si:H/TiO x /low work function metal) structure is investigated to realize high-performance passivating electron-selective contacts for crystalline silicon solar cells. The absence of a highly doped Si region in this contact structure is meant to reduce the optoelectrical losses. We show that a low contact resistivity (ρ c ) can be obtained by the combined effect of a low work function metal, such as calcium (Φ 2.9 eV), and Fermi-level depinning in the metal-insulator-semiconductor contact structure (where in our case TiO x acts as the insulator on the intrinsic a-Si:H passivating layer). TiO x grown by ALD is effective to achieve not only a low ρ c but also good passivation properties. As an electron contact in silicon heterojunction solar cells, inserting interfacial TiO x at the i-a-Si:H/Ca interface significantly enhances the solar cell conversion efficiency. Consequently, the champion solar cell with the ATOM contact achieves a V OC of 711 mV, FF of 72.9%, J SC of 35.1 mA/cm 2 , and an efficiency of 18.2%. The achievement of a high V OC and reasonable FF without the need for a highly doped Si layer serves as a valuable proof of concept for future developments on passivating electron-selective contacts using this structure.
DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
Low contact resistivity (ρ c ) and low recombination current density at the metallized area (J 0,metal ) are the key parameters for an electron-selective contact in solar cells, and an i-a-Si:H/TiO x /low work function metal (ATOM) structure could satisfy these criteria. In this work, to achieve strong downward band bending, an Yb (Φ = 2.5−2.6 eV)/Ag stack is used. Moreover, the impact of (1) substrate topography (flat or textured), (2) TiO x thickness, and (3) Ti precursor (TTIP vs TDMAT) on the ATOM contact performance is investigated. The results show that the ATOM contact is relatively insensitive to the surface topography and to the Ti precursors (TTIP or TDMAT) used for the atomic layer deposition (ALD) of TiO x . However, the TiO x thickness has a significant impact on the ρ c and marginally on the J 0,metal of the ATOM contact. For all topography cases and Ti precursors, 1 nm thick TiO x results in the lowest ρ c value, most likely due to E F,metal depinning. In the silicon heterojunction solar cell, this ATOM contact (i-a-Si:H/TiO x /Yb/Ag) yields a solar cell efficiency of 19.2% with a high V OC of 723 mV without the need of a doped n-a-Si:H layer. Concerning the thermal stability of these contacts, TEM images confirm that Yb does not diffuse into the i-a-Si:H layer after an annealing at 180°C for 30 min thanks to the TiO x layer behaving as a diffusion barrier. 98% of the initial solar cell efficiency is preserved even after successive annealing treatments at 150 and 175°C, which are values in the same temperature range used in the module lamination and the sintering of the printed Ag. These results in combination with the demonstrated efficiency underline that the ATOM contact is a promising route to realize high-efficiency solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.