The related neuropeptides vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI) are expressed at high levels in the neurons of the suprachiasmatic nucleus (SCN), but their function in the regulation of circadian rhythms is unknown. To study the role of these peptides on the circadian system in vivo, a new mouse model was developed in which both VIP and PHI genes were disrupted by homologous recombination. In a light-dark cycle, these mice exhibited diurnal rhythms in activity which were largely indistinguishable from wild-type controls. In constant darkness, the VIP/PHI-deficient mice exhibited pronounced abnormalities in their circadian system. The activity patterns started approximately 8 h earlier than predicted by the previous light cycle. In addition, lack of VIP/PHI led to a shortened free-running period and a loss of the coherence and precision of the circadian locomotor activity rhythm. In about one-quarter of VIP/PHI mice examined, the wheel-running rhythm became arrhythmic after several weeks in constant darkness. Another striking example of these deficits is seen in the split-activity patterns expressed by the mutant mice when they were exposed to a skeleton photoperiod. In addition, the VIP/PHI-deficient mice exhibited deficits in the response of their circadian system to light. Electrophysiological analysis indicates that VIP enhances inhibitory synaptic transmission within the SCN of wild-type and VIP/PHI-deficient mice. Together, the observations suggest that VIP/PHI peptides are critically involved in both the generation of circadian oscillations as well as the normal synchronization of these rhythms to light.
Although positive and negative signals control neurogenesis in the embryo, factors regulating postnatal proliferation are less well characterized. In the vertebrate cerebellum, Sonic Hedgehog (Shh) is an efficacious mitogen for cerebellar granule neuron precursors (GNPs), and mutations activating the Shh pathway are linked to medulloblastoma, a tumor derived from GNPs. Although the mitogenic effects of Shh can be blocked by increasing cAMP or protein kinase A activity, the physiological factors antagonizing this stimulation are undefined. In the embryo, pituitary adenylate cyclase-activating polypeptide (PACAP) receptor 1 (PAC1) signaling regulates neural precursor proliferation. We now show that in the developing cerebellum, PAC1 mRNA colocalizes with gene transcripts for Shh receptor Patched 1 and target gene Gli1 in the external germinal layer. We consequently investigated the interactions of PACAP and Shh in proliferation of purified GNPs in culture. Shh exhibited mitogenic activity in both rat and mouse cultures, stimulating DNA synthesis approximately 10-fold after 48 hr of exposure. PACAP markedly inhibited Shh-induced thymidine incorporation by 50 and 85% in rat and mouse GNPs, respectively, but did not significantly affect the stimulation induced by other mitogens. This selective effect was reproduced by the specific PAC1 agonist maxadilan, as well as by the adenylate cyclase activator forskolin, suggesting that PAC1 provides a potent inhibitory signal for Shh-induced proliferation in developing cerebellum. In contrast, in the absence of Shh, PACAP and maxadilan modestly stimulated DNA synthesis, an effect reproduced by activating protein kinase C. These observations suggest that G-protein-coupled receptors, such as PAC1, serve as sensors of environmental cues, coordinating diverse neurogenetic signals.
Previous studies indicate that light information reaches the suprachiasmatic nucleus through a subpopulation of retinal ganglion cells that contain both glutamate and pituitary adenylyl cyclase-activating peptide (PACAP). Although the role of glutamate in this pathway has been well studied, the involvement of PACAP and its receptors is only beginning to be understood. To investigate the functions of PACAP in vivo, we developed a mouse model in which the gene coding for PACAP was disrupted by targeted homologous recombination. RIA was used to confirm a lack of detectable PACAP protein in these mice. PACAP-deficient mice exhibited significant impairment in the magnitude of the response to brief light exposures with both light-induced phase delays and advances of the circadian system impacted. This mutation equally impacted phase shifts induced by bright and dim light exposure. Despite these effects on phase shifting, the loss of PACAP had only limited effects on the generation of circadian oscillations, as measured by rhythms in wheel-running activity. Unlike melanopsin-deficient mice, the mice lacking PACAP exhibited no loss of function in the direct light-induced inhibition of locomotor activity, i.e., masking. Finally, the PACAP-deficient mice exhibited normal phase shifts in response to exposure to discrete dark treatments. The results reported here show that the loss of PACAP produced selective deficits in the light response of the circadian system.
Atrial natriuretic peptide (ANP) binding sites have been detected in the embryonic brain, but the specific receptor subtypes and biological functions for ANP family ligands therein remain undefined. We now characterize the patterns of gene expression for the natriuretic peptides [ANP, brain natriuretic peptide (BNP), type-C natriuretic peptide (CNP)] and their receptors (NPR-A, NPR-B, NPR-C) at several early stages in the embryonic mouse nervous system by in situ hybridization, and begin to define the potential developmental actions using cell culture models of peripheral (PNS) and central nervous systems (CNS). In the CNS, gene transcripts for CNP were present at the onset of neurogenesis, embryonic day 10.5 (E10.5), primarily in the dorsal part of the ventricular zone (VZ) throughout the hindbrain and spinal cord. On E14.5, new CNP signals were observed in the ventrolateral spinal cord where motor neurons reside, and in bands of cells surrounding the spinal cord and hindbrain, localized to dura and/or cartilage primordia. ANP and BNP gene transcripts were not detected in embryonic brain, but were highly abundant in the heart. The CNP-specific receptor (NPR-B) gene was expressed in cells just outside the VZ, in regions where post-mitotic neurons are differentiating. Gene expression for NPR-C, which recognizes all natriuretic peptides, was present in the roof plate of the hindbrain and spinal cord and in bilateral stripes just dorsolateral to the floor plate at E12.5. In the PNS, NPR-B and NPR-C transcripts were highly expressed in dorsal root sensory (DRG) and cranial ganglia beginning at E10.5, with NPR-C signal also prominent in adjoining nerves, consistent with Schwann cell localization. In contrast, NPR-A gene expression was undetectable in neural tissues. To define ontogenetic functions, we employed embryonic DRG and hindbrain cell cultures. The natriuretic peptides potently stimulated DNA synthesis in neuron-depleted as well as neuron-containing Schwann cell cultures and differentially inhibited neurite outgrowth in DRG sensory neuron cultures. CNP also exhibited modest survival-promoting effects for sensory neurons. In marked contrast to PNS effects, the peptides inhibited proliferation of neural precursor cells of the E10.5 hindbrain. Moreover, CNP, alone and in combination with sonic hedgehog (Shh), induced the expression of the Shh target gene gli-1 in hindbrain cultures, suggesting that natriuretic peptides may also modify patterning events in the embryonic brain. These studies reveal widespread, but discrete patterns of natriuretic peptide and receptor gene expression in the early embryonic nervous system, and suggest that the peptides play region- and stage-specific roles during the development of the peripheral and central nervous systems.
The neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase-activating peptide (PACAP) are induced strongly in neurons after several types of injury, and exhibit neuroprotective actions in vitro and in vivo. It is thought that changes in expression of neuropeptides and other molecules in injured neurons are mediated by new factors produced in Schwann and immune cells at the injury site, a loss of target-derived factors, or a combination of mediators. To begin to determine the role of the inflammatory mediators, we investigated axotomy-induced changes in VIP and PACAP gene expression in the facial motor nucleus in severe combined immunodeficient (SCID) mice, and in mice with targeted mutations in specific cytokine genes. In normal mice, VIP and PACAP mRNA was induced strongly in facial motor neurons 4 days after axotomy. The increase in PACAP mRNA was blocked selectively in SCID mice, indicating that mechanisms responsible for VIP and PACAP gene induction are not identical. The loss of PACAP gene expression in SCID mice after axotomy was fully reversed by an infusion of normal splenocytes, suggesting that PACAP mRNA induction requires inflammatory mediators. PACAP and VIP mRNA inductions, however, were maintained in mice lacking leukemia inhibitory factor (LIF) and interleukin-6 (IL-6), and in mice lacking both receptors for tumor necrosis factor alpha (TNFalpha). The data suggest that an inflammatory response, most likely involving T lymphocytes, is necessary for the axotomy-induced increase in PACAP but not in VIP. LIF, IL-6, and TNFalpha, however, are not required for this response to injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.