Automated planning and scheduling are increasingly utilised in solving evsery day planning task. Planning in domains with continuous numeric changes present certain limitations and tremendous challenges to advanced planning algorithms. There are many pertinent examples to the engineering community; however, a case study is provided through the urban traffic controller domain. This paper introduce a novel hybrid approach to state-space planning systems involving a continuous process which can be utilised in several applications. We explore Model Predictive Control (MPC) and explain how it can be introduce into planning with domains containing mixed discrete and continuous state variables. This preserves the numerous benefits of AI Planning approach by the use of explicit reasoning and declarative modelling. It also leverages on the capability of MPC to manage numeric computation and control of continuous processes. The hybrid approach was tested on an urban traffic control network to ascertain it practicability on a continuous domain; the results show its potential to control and optimise heavy volumes of traffic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.