Abstract-The present work deals with lexicographic noncooperative (strategic) games in which the set of strategies of the players are metric compact spaces and the vector-functions of winning are continuous on the set of situations. In such games we introduce the definition of a weak nonstrict (determined by usual nonstrict lexicographic inequality) of Nash equilibrium situation in pure strategies. It has been defined the stability of such equilibrium situation and of lexicographic noncooperative game in relation to change of vectorfunctions of the winning of players, a problem of an equilibrium stable situation and availability of lexicographic noncooperative game has been studied. The conditions of their stability have been brought. The identification of the indicated conditions has been connected with those features of the task of lexicographic maximum that differs from the task of scalar maximum: the set of points of lexicographic maximum in the task of lexicographic maximum of continuous vector-function defined on metric compact is compact. And in the lexicographic noncooperative game the set of equilibrium situations may not be compact. In particular, it is certified that if in lexicographic game there is only one equilibrium situation then it is a stable situation and the relative game is stable.
In classical cooperative game theory one of the most important principle is defined by Shapley with three axioms common payoff fair distribution's Shapley value (or Shapley vector). In the last decade the field of its usage has been spread widely. At this period of time Shapley value is used in network and social systems. Naturally, the question is if it is possible to use Shapley's classical axiomatics for lexicographic cooperative games.
-A model of dyadic non-cooperative game) (H Γ is discussed in the paper for the set of one and the same players' strategies. The players make their choice sitting round the table and have the opportunity to coordinate only the meanings of utilities in every situation. Therefore the players' payoffs are given by 2 2 × matrixes. A notion "the equalized situation" in mixed strategies which is at the same time the equilibrium is introduced. The theorem has been proved, which establishes the conditions of existance of an equalized situation in the given game. In the case of the existence algorithm is constructed. If equalized situation doesn't exist in the game, then there exists the equilibrium situation in the pure strategies and it is possible to find it by analysis of situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.