Cholera toxin (CT), an AB5-subunit toxin, enters host cells by binding the ganglioside GM1 at the plasma membrane (PM) and travels retrograde through the trans-Golgi Network into the endoplasmic reticulum (ER). In the ER, a portion of CT, the enzymatic A1-chain, is unfolded by protein disulfide isomerase and retro-translocated to the cytosol by hijacking components of the ER associated degradation pathway for misfolded proteins. After crossing the ER membrane, the A1-chain refolds in the cytosol and escapes rapid degradation by the proteasome to induce disease by ADP-ribosylating the large G-protein Gs and activating adenylyl cyclase. Here, we review the mechanisms of toxin trafficking by GM1 and retro-translocation of the A1-chain to the cytosol.
The process of fusion at the nerve terminal is mediated via a specialized set of proteins in the synaptic vesicles and the presynaptic membrane. Three soluble N-ethylmaleimide-sensitive factor (NSF)-attachment protein receptors (SNAREs) have been implicated in membrane fusion. The structure and arrangement of these SNAREs associated with lipid bilayers were examined using atomic force microscopy. A bilayer electrophysiological setup allowed for measurements of membrane conductance and capacitance. Here we demonstrate that the interaction of these proteins to form a fusion pore is dependent on the presence of t-SNAREs and v-SNARE in opposing bilayers. Addition of purified recombinant v-SNARE to a t-SNARE-reconstituted lipid membrane increased only the size of the globular t-SNARE oligomer without influencing the electrical properties of the membrane. However when t-SNARE vesicles were added to a v-SNARE membrane, SNAREs assembles in a ring pattern and a stepwise increase in capacitance, and increase in conductance were observed. Thus, t- and v-SNAREs are required to reside in opposing bilayers to allow appropriate t-/v-SNARE interactions leading to membrane fusion.
The process of cancer progression involves the action of multiple proteolytic systems, among which the family of matrix metalloproteinases (MMPs) play a pivotal role. The MMPs evolved to accomplish their proteolytic tasks in multiple cellular and tissue microenvironments including lipid rafts by incorporation and deletions of specific structural domains. The membrane typeMMPs (MT-MMPs) incorporated membrane anchoring domains that display these proteases at the cell surface, and thus they are optimal pericellular proteolytic machines. Two members of the MT-MMP subfamily, MMP-17 (MT4-MMP) and MMP-25 (MT6-MMP), are anchored to the plasma membrane via a glycosyl-phosphatidyl inositol (GPI) anchor, which confers these enzymes a unique set of regulatory and functional mechanisms that separates them from the rest of the MMP family. Discovered almost a decade ago, the body of work on GPI-MT-MMPs today is still surprisingly limited when compared to other MT-MMPs. However, new evidence shows that the GPI-MT-MMPs are highly expressed in human cancer, where they are associated with progression. Accumulating biochemical and functional evidence also highlights their distinct properties. In this review, we summarize the structural, biochemical, and biological properties of GPI-MT-MMPs and present an overview of their expression and role in cancer. We further discuss the potential implications of GPI-anchoring for enzyme function. Finally, we comment on the new scientific challenges that lie ahead to better understand the function and role in cancer of these intriguing but yet unique MMPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.