In order to improve the clarity and color fidelity of traffic images under the complex environment of haze and uneven illumination and promote road traffic safety monitoring, a traffic image enhancement model based on illumination adjustment and depth of field difference is proposed. The algorithm is based on Retinex theory, uses dark channel principle to obtain image depth of the field, and uses spectral clustering algorithm to cluster image depth. After the subimages are divided, the local haze concentration is estimated according to the depth of field and the subimages are adaptively enhanced and fused. In addition, the illumination component is obtained by multiscale guided filtering to maintain the edge characteristics of the image, and the uneven illumination problem is solved by adjusting the curve function. The experimental results show that the proposed model can effectively enhance the uneven illumination and haze weather image in the traffic scene and the visual effect of the images is good. The generated image has rich details, improves the quality of traffic images, and can meet the needs of traffic practical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.