In the Korean LILW (Low- and Intermediate-Level radioactive Waste) repository at Gyeongju city, the degradation of organic wastes and the corrosion of metallic wastes and steel containers would be important processes that affect repository geochemistry, speciation and transport of radionuclides during the lifetime of a radioactive waste disposal facility. Gas is generated in association with these processes and has the potential threat to pressurize the repository, which can promote the transport of groundwater and gas, and consequently radionuclide transport. Microbial activity plays an important role in organic degradation, corrosion and gas generation through the mediation of reduction-oxidation reactions. The Korean research project on gas generation is being performed by Korea Radioactive Waste Management Corporation (hereafter referred to as “KRMC”). A full-scale in-situ experiment will form a central part of the project, where gas generation in real radioactive low-level maintenance waste from nuclear power plants will be done as an in-depth study during ten years at least. In order to examine gas generation issues from an LILW repository which is being constructed and will be completed by the end of December, 2012, two large-scale facilities for the gas generation experiment will be established, each equipped with a concrete container carrying on 16 drums of 200 L and 9 drums of 320 L of LILW from Korean nuclear power plants. Each container will be enclosed within a gas-tight and acid-proof steel tank. The experiment facility will be fully filled with ground water that provides representative geochemical conditions and microbial inoculation in the near field of repository. In the experiment, the design includes long-term monitoring and analyses for the rate and composition of gas generated, and aqueous geochemistry and microbe populations present at various locations through on-line analyzers and manual periodical sampling. A main schedule for establishing the experiment facility is as follows: Completion of the detailed design until the second quarter of the year 2010; Completion of the manufacture and on-site installation until the second quarter of the year 2011; Start of the operation and monitoring from the third quarter of the year 2011.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.