The specific rates of solvolysis of p-nitrobenzyl chloroformate are well correlated using the extended Grunwald-Winstein equation, with a high sensitivity (l) to changes in solvent nucleophilicity (N(T)) and a moderate sensitivity (m) to changes in solvent ionizing power (Y(Cl)). The values are consistent with a rate-determining association within an association-dissociation pathway. The selectivity values (S) for the attack at the acyl carbon show a modest preference for ethanol over water and a relatively high preference for ethanol over 2,2,2-trifluoroethanol (TFE). The solvolyses of benzyl chloroformate show similar characteristics in solvents of relatively high nucleophilicity and/or low ionizing power. In solvents with considerable fluoro alcohol content, an ionization mechanism, accompanied by loss of carbon dioxide, leads to benzyl chloride, benzyl alcohol, and benzyl alkyl ether. A new correlation now applies, with a much lower l value and somewhat higher m value. The S values for this pathway are close to unity, even in TFE-ethanol mixtures, consistent with the components of the binary solvent capturing a highly reactive carbocation.
The specific rates of solvolyis of methyl chloroformate are very well correlated by the extended Grunwald±Winstein equation over a wide range of solvents; the pathway is believed to be predominantly addition±elimination, except that a positive deviation for solvolysis in 90% 1,1,1,3,3,3-hexafluoropropan-2-ol suggests an 80% contribution from an ionisation mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.