To fulfil the tight area and memory constraints in IoT applications, the design of efficient Convolutional Neural Network (CNN) hardware becomes crucial. Quantization of CNN is one of the promising approach that allows the compression of large CNN into a much smaller one, which is very suitable for IoT applications. Among various proposed quantization schemes, Power-of-two (PoT) quantization enables efficient hardware implementation and small memory consumption for CNN accelerators, but requires retraining of CNN to retain its accuracy. This paper proposes a two-level post-training static quantization technique (DoubleQ) that combines the 8-bit and PoT weight quantization. The CNN weight is first quantized to 8-bit (level one), then further quantized to PoT (level two). This allows multiplication to be carried out using shifters, by expressing the weights in their PoT exponent form. DoubleQ also reduces the memory storage requirement for CNN, as only the exponent of the weights is needed for storage. However, DoubleQ trades the accuracy of the network for reduced memory storage. To recover the accuracy, a selection process (DoubleQExt) was proposed to strategically select some of the less informative layers in the network to be quantized with PoT at the second level. On ResNet-20, the proposed DoubleQ can reduce the memory consumption by 37.50% with 7.28% accuracy degradation compared to 8-bit quantization. By applying DoubleQExt, the accuracy is only degraded by 1.19% compared to 8-bit version while achieving a memory reduction of 23.05%. This result is also 1% more accurate than the state-of-the-art work (SegLog). The proposed DoubleQExt also allows flexible configuration to trade off the memory consumption with better accuracy, which is not found in the other state-of-the-art works. With the proposed two-level weight quantization, one can achieve a more efficient hardware architecture for CNN with minimal impact to the accuracy, which is crucial for IoT applications.
SummaryIndustrial Internet of Things (IIoT) is an emerging technology that relies on the use of massively connected sensor nodes to gather industrial‐related data. The collected data are used for postanalysis to generate insights for reducing production down time, cost optimization, and predictive maintenance. One of the key requirements for sensor node in such application is the data confidentiality; as such sensor data may potentially leak the manufacturing and industrial secret to their competitors. In this paper, a field programmable gate array (FPGA)‐based sensor node with Advanced Encryption Standard (AES) crypto‐processor is proposed to safeguard the sensor data. A novel queue system is proposed to further reduce the data processing time and energy consumption. The proposed queue system is able to achieve 1.48× speed up and ∼16% energy reduction, which makes it a competitive candidate for Industrial IoT applications. The technique developed in this paper can also be extended to implement FPGA‐based gateway with encryption feature, which is very useful for edge computing in IoT applications.
<p>Practical deployment of convolutional neural net?work (CNN) and cryptography algorithm on constrained devices are challenging due to the huge computation and memory requirement. Developing separate hardware accelerator for AI and cryptography incur large area consumption, which is not desirable in many applications. This paper proposes a viable solution to this issue by expressing the CNN and cryptography as Generic-Matrix-Multiplication (GEMM) operations and map them to the same accelerator for reduced hardware consumption. A novel systolic tensor array (STA) design was proposed to reduce the data movement, effectively reducing the operand registers by 2×. Two novel techniques, input layer extension and polynomial factorization, are proposed to mitigate the under-utilization issue found in existing STA architecture. Additionally, the Tensor Processing Element (TPE) is fused using DSP unit to reduce the Look-Up Table (LUT) and Flip-Flops (FF) consumption for implementing multipliers. On top of that, a novel memory efficient factorization technique is proposed to allow computation of polynomial convolution on the same STA. Experimental results show that Cryptensor achieved 22.3% better throughput for VGG-16 implementation on XC7Z020 FPGA; 95.0% lesser LUT when implementing on XC7Z045 compared to state-of-the-art result. Cryptensor can also flexibly support multiple security levels in NTRU scheme, with no additional hardware. The proposed hardware unifies the computation of two different domains that are critical for IoT applications, which greatly reduces the hardware consumption on edge nodes. </p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.