Adolescent idiopathic scoliosis (AIS) is the most common pediatric skeletal disease. We previously reported a locus on chromosome 10q24.31 associated with AIS susceptibility in Japanese using a genome-wide association study (GWAS) consisting of 1,033 cases and 1,473 controls. To identify additional AIS-associated loci, we expanded the study by adding X-chromosome SNPs in the GWAS and increasing the size of the replication cohorts. Through a stepwise association study including 1,819 cases and 25,939 controls, we identified a new susceptibility locus on chromosome 6q24.1 in Japanese (P = 2.25 × 10(-10); odds ratio (OR) = 1.28). The most significantly associated SNP, rs6570507, was in GPR126 (encoding G protein-coupled receptor 126). Its association was replicated in Han Chinese and European-ancestry populations (combined P = 1.27 × 10(-14); OR = 1.27). GPR126 was highly expressed in cartilage, and the knockdown of gpr126 in zebrafish caused delayed ossification of the developing spine. Our results should provide insights into the etiology and pathogenesis of AIS.
Lumbar disc degeneration (LDD) is associated with both genetic and environmental factors and affects many people worldwide. A hallmark of LDD is loss of proteoglycan and water content in the nucleus pulposus of intervertebral discs. While some genetic determinants have been reported, the etiology of LDD is largely unknown. Here we report the findings from linkage and association studies on a total of 32,642 subjects consisting of 4,043 LDD cases and 28,599 control subjects. We identified carbohydrate sulfotransferase 3 (CHST3), an enzyme that catalyzes proteoglycan sulfation, as a susceptibility gene for LDD. The strongest genome-wide linkage peak encompassed CHST3 from a Southern Chinese family-based data set, while a genome-wide association was observed at rs4148941 in the gene in a meta-analysis using multiethnic population cohorts. rs4148941 lies within a potential microRNA-513a-5p (miR-513a-5p) binding site. Interaction between miR-513a-5p and mRNA transcribed from the susceptibility allele (A allele) of rs4148941 was enhanced in vitro compared with transcripts from other alleles. Additionally, expression of CHST3 mRNA was significantly reduced in the intervertebral disc cells of human subjects carrying the A allele of rs4148941. Together, our data provide new insights into the etiology of LDD, implicating an interplay between genetic risk factors and miRNA.
cWe previously associated a missense mutation of the tc0668 gene of serial in vitro-passaged Chlamydia muridarum, a murine model of human urogenital C. trachomatis, with severely attenuated disease development in the upper genital tract of female mice. Since these mutants also contained a TC0237 Q117E missense mutation that enhances their in vitro infectivity, an effort was made here to isolate and characterize a tc0668 single mutant to determine its individual contribution to urogenital pathogenicity. Detailed genetic analysis of C. muridarum passages revealed a truncated variant with a G216* nonsense mutation of the 408-amino-acid TC0668 protein that does not produce a detectable product. Intracellular growth and infectivity of C. muridarum in vitro remain unaffected in the absence of TC0668. Intravaginal inoculation of the TC0668 null mutant into C3H/HeJ mice results in a typical course of lower genital tract infection but, unlike a pathogenic isogenic control, is unable to elicit significant chronic inflammation of the oviduct and fails to induce hydrosalpinx. Thus, TC0668 is demonstrated as an important chromosome-encoded urogenital pathogenicity factor of C. muridarum and the first with these characteristics to be discovered for a Chlamydia pathogen. Chlamydia muridarum is a Gram-negative obligate intracellular pathogen that was isolated from a steady-state respiratory infection of laboratory mice in the early 1940s (1, 2). Like other chlamydial organisms, C. muridarum has a biphasic life cycle that alternates between infectious elementary body (EB) and replicating reticulate body (RB) morphologies. The genome of C. muridarum is reductively evolved, containing a 1.07-Mb circular chromosome and single 7.5-kb extrachromosomal plasmid (3). In that C. muridarum and other chlamydial pathogens have fewer than 1,000 genes and ϳ900 encoded proteins, roughly half the number encoded by environmental chlamydial organisms that parasitize simple single-celled eukaryotes (4), it is not known which of the many cryptic genetic factors allow them to thrive within and harm complex vertebrates.In the laboratory, C. muridarum is used as a model of urogenital disease resulting from sexually transmitted Chlamydia trachomatis in women. The basic biology and genomes of these two pathogens are highly conserved. The urogenital biovar of C. trachomatis is responsible for the most reported cases of bacterial infection in the United States (5) and is a pervasive global health problem (6). In women, ascending infection from the lower to upper genital tracts, separated by the cervical barrier, can lead to loss of the ciliated epithelium and irreversible fibrotic remodeling of the fallopian tubes after primary infection is resolved (7). If left untreated, often because of asymptomatic infection (8), afflicted women can experience severe chronic sequelae, such as tubal blockage, hydrosalpinx, spontaneous abortion, ectopic pregnancy, and tubal factor infertility (9, 10). Genital inoculation of female mice with C. muridarum results in analo...
Osteoarthritis (OA) is the most prevalent form of arthritis and accounts for substantial morbidity and disability, particularly in the elderly. It is characterized by changes in joint structure including degeneration of the articular cartilage and its etiology is multifactorial with a strong postulated genetic component. We performed a meta-analysis of four genome-wide association (GWA) studies of 2,371 knee OA cases and 35,909 controls in Caucasian populations. Replication of the top hits was attempted with data from additional ten replication datasets. With a cumulative sample size of 6,709 cases and 44,439 controls, we identified one genome-wide significant locus on chromosome 7q22 for knee OA (rs4730250, p-value=9.2×10 −9 ), thereby confirming its role as a susceptibility locus for OA. The associated signal is located within a large (500kb) linkage disequilibrium (LD) block that contains six genes; PRKAR2B (protein kinase, cAMP-dependent, regulatory, type II, beta), HPB1 (HMG-box transcription factor 1), COG5 (component of oligomeric golgi complex 5), GPR22 (G protein-coupled receptor 22), DUS4L (dihydrouridine synthase 4-like), and BCAP29 (the B-cell receptor-associated protein 29). Gene expression analyses of the (six) genes in primary cells derived from different joint tissues confirmed expression of all the genes in the joint environment. Evangelou et al.
Background Mutations in TRPV4, a gene that encodes a Ca 2+ permeable non-selective cation channel, have recently been found in a spectrum of skeletal dysplasias that includes brachyolmia, spondylometaphyseal dysplasia, Kozlowski type (SMDK) and metatropic dysplasia (MD). Only a total of seven missense mutations were detected, however. The full spectrum of TRPV4 mutations and their phenotypes remained unclear. Objectives and methods To examine TRPV4 mutation spectrum and phenotypeÀgenotype association, we searched for TRPV4 mutations by PCR-direct sequencing from genomic DNA in 22 MD and 20 SMDK probands. Results TRPV4 mutations were found in all but one MD subject. In total, 19 different heterozygous mutations were identified in 41 subjects; two were recurrent and 17 were novel. In MD, a recurrent P799L mutation was identified in nine subjects, as well as 10 novel mutations including F471del, the first deletion mutation of TRPV4. In SMDK, a recurrent R594H mutation was identified in 12 subjects and seven novel mutations. An association between the position of mutations and the disease phenotype was also observed. Thus, P799 in exon 15 is a hot codon for MD mutations, as four different amino acid substitutions have been observed at this codon; while R594 in exon 11 is a hotspot for SMDK mutations. Conclusion The TRPV4 mutation spectrum in MD and SMDK, which showed genotypeÀphenotype correlation and potential functional significance of mutations that are non-randomly distributed over the gene, was presented in this study. The results would help diagnostic laboratories establish efficient screening strategies for genetic diagnosis of the TRPV4 dysplasia family diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.