Objective Assess the efficacy of single and multiple intra-articular injections of autologous adipose-derived stem cells (ASCs) and adipose-derived stromal vascular fraction (ADSVF) for the treatment of knee osteoarthritis (OA). Methods We conducted a thorough and systematic search of several databases, including PubMed, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov, to identify relevant studies. The included studies were randomized controlled trials (RCTs) that involved single or multiple intra-articular injections of autologous ASCs or ADSVF for the treatment of patients with knee osteoarthritis, without any additional treatment, and compared to either placebo or hyaluronic acid. Results A total of seven RCTs were analyzed in this study. The results of the meta-analysis show that compared to the control group, both single and multiple intra-articular injections of ASCs or ADSVF demonstrated superior pain relief in the short term (Z = 3.10; P < 0.0001 and Z = 4.66; P < 0.00001) and significantly improved function (Z = 2.61; P < 0.009 and Z = 2.80; P = 0.005). Furthermore, MRI assessment showed a significant improvement in cartilage condition compared to the control group. (Z = 8.14; P < 0.000001 and Z = 5.58; P < 0.00001). Conclusions In conclusion, in osteoarthritis of the knee, single or multiple intra-articular injections of autologous ASCs or ADSVF have shown significant pain improvement and safety in the short term in the absence of adjuvant therapy. Significant improvements in cartilage status were also shown. A larger sample size of randomized controlled trials is needed for direct comparison of the difference in effect between single and multiple injections.
Cantharidin (CTD), a natural compound derived from Mylabris, is widely used in traditional Oriental medicine for its potent anticancer properties. However, its clinical application is restricted due to its high toxicity, particularly towards the liver. This review provides a concise understanding of the hepatotoxic mechanisms of CTD and highlights novel therapeutic strategies to mitigate its toxicity while enhancing its anticancer efficacy. We systematically explore the molecular mechanisms underlying CTD-induced hepatotoxicity, focusing on the involvement of apoptotic and autophagic processes in hepatocyte injury. We further discuss the endogenous and exogenous pathways implicated in CTD-induced liver damage and potential therapeutic targets. This review also summarizes the structural modifications of CTD derivatives and their impact on anticancer activity. Additionally, we delve into the advancements in nanoparticle-based drug delivery systems that hold promise in overcoming the limitations of CTD derivatives. By offering valuable insights into the hepatotoxic mechanisms of CTD and outlining potential avenues for future research, this review contributes to the ongoing efforts to develop safer and more effective CTD-based therapies.
Multiple myeloma (MM), one of the B-cell non-Hodgkin lymphomas, is a bone marrow-derived, antibody-producing cancer of the plasma cells. In the advanced stages, the cancer cells frequently cause widespread osteolytic bone damage; however, in rare cases, MM also manifests as an intracranial plasmacytoma. In the present study, we describe a case in which a patient, initially treated for MM and with subsequent complete remission, was admitted to hospital with a lesion in the right cerebellar hemisphere and neurological symptoms of a brain tumor. Our initial diagnosis was an MM relapse with the rare occurring intracranial manifestation. However, pathological tests confirmed the diagnosis of a high-grade astrocytoma. In this case report, we describe the characteristics, as well as the treatment issues, diagnoses and clinical developments of this patient.
Background Chronic inflammation is the major pathological feature of Atherosclerosis(As). Inflammation may accelerate plaque to develop, is a key factor resulting in the thinning of fibrous cap and the vulnerable rupture of plaque. Presently, clinical treatments are still lacking. It is necessary to find a safe and effective treatment for As inflammation. Simiaoyongan Decoction (SMYA) has potential anti-inflammatory and plaque protection effects. This protocol aims to evaluate the efficacy, safety,and mechanism of SMYA for patients with carotid atherosclerotic plaque. Methods/design The assess of SMYA clinical trial is designed as a randomized, double-blind, placebo-controlled study. The sample size is 86 cases in total, and there are 43 participants in the intervention group and the control group respectively. The intervention group takes SMYA, while the control group takes SMYA placebo. The medication lasts for 14 days every 10 weeks, with a total of 50 weeks. We will use carotid artery high resolution magnetic resonance imaging (HR-MRI) to measure plaque. The plaque minimum fiber cap thickness (PMFCT) is adopted as the primary outcome. The secondary outcomes include plaque fiber cap volume, volume percentage of fiber cap, lipid-rich necrotic core (LRNC) volume, volume percentage of LRNC, internal bleeding volume of plaque, internal bleeding volume percentage of plaque, plaque calcification volume, volume percentage of plaque calcification, lumen stenosis rate, average and maximum of vessel wall thickness, vessel wall volume, total vessel wall load, carotid atherosclerosis score, hs-CRP, IL-1β and IL-6, the leve of lipid profiles and blood glucose, blood pressure and body weight. Discussion We anticipate that patients with As plaque will be improved from SMYA by inhibiting inflammation to enhance plaque stability. This study analyzes plaque by using HR-MRI to evaluate the clinical efficacy and safety of SMYA. Moreover, we conduct transcriptome analysis, proteomic analysis and metagenomic analysis of blood and stool of participants to study the mechanism of SMYA against As plaque. This is the first prospective TCM trial to directly observe and treat As plaque by inhibiting inflammatory reaction. If successful, the finding will be valuable in the treatment of As plaque and drug development, especially in the “statin era”. Trial registration number Chinese Clinical Trial Registry ChiCTR2000039062; Registered on 1st November 2020.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.