MotivationMost currently available text mining tools share two characteristics that make them less than optimal for use by biomedical researchers: they require extensive specialist skills in natural language processing and they were built on the assumption that they should optimize global performance metrics on representative datasets. This is a problem because most end-users are not natural language processing specialists and because biomedical researchers often care less about global metrics like F-measure or representative datasets than they do about more granular metrics such as precision and recall on their own specialized datasets. Thus, there are fundamental mismatches between the assumptions of much text mining work and the preferences of potential end-users.ResultsThis article introduces the concept of Agile text mining, and presents the PubAnnotation ecosystem as an example implementation. The system approaches the problems from two perspectives: it allows the reformulation of text mining by biomedical researchers from the task of assembling a complete system to the task of retrieving warehoused annotations, and it makes it possible to do very targeted customization of the pre-existing system to address specific end-user requirements. Two use cases are presented: assisted curation of the GlycoEpitope database, and assessing coverage in the literature of pre-eclampsia-associated genes.Availability and implementationThe three tools that make up the ecosystem, PubAnnotation, PubDictionaries and TextAE are publicly available as web services, and also as open source projects. The dictionaries and the annotation datasets associated with the use cases are all publicly available through PubDictionaries and PubAnnotation, respectively.
2019, Korea Genome Organization This is an open-access article distributed under the terms of the Creative Commons Attribution license (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In this paper, we investigate cross-platform interoperability for natural language processing (NLP) and, in particular, annotation of textual resources, with an eye toward identifying the design elements of annotation models and processes that are particularly problematic for, or amenable to, enabling seamless communication across different platforms. The study is conducted in the context of a specific annotation methodology, namely machine-assisted interactive annotation (also known as human-in-the-loop annotation). This methodology requires the ability to freely combine resources from different document repositories, access a wide array of NLP tools that automatically annotate corpora for various linguistic phenomena, and use a sophisticated annotation editor that enables interactive manual annotation coupled with on-the-fly machine learning. We consider three independently developed platforms, each of which utilizes a different model for representing annotations over text, and each of which performs a different role in the process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.