Mycobacterium tuberculosis is a global human pathogen that infects macrophages and can establish a latent infection. Emerging evidence has established the nutrients metabolism as a key point to study the pathogenesis of M. tuberculosis and host immunity. It was reported that fatty acids and cholesterol are the major nutrient sources of M. tuberculosis in the period of infection. However, the mechanism by which M. tuberculosis utilizes lipids for maintaining life activities in nutrient-deficiency macrophages is poorly understood. Mycobacterium smegmatis is fast-growing and generally used to study its pathogenic counterpart, M. tuberculosis. In this work, we found that the phosphate sensing regulator RegX3 of M. smegmatis is required for its growing on propionate and surviving in macrophages. We further demonstrated that the expression of prpR and related genes (prpDBC) in methylcitrate cycle could be enhanced by RegX3 in response to the phosphate-starvation condition. The binding sites of the promoter region of prpR for RegX3 and PrpR were investigated. In addition, cell morphology assay showed that RegX3 is responsible for cell morphological elongation, thus promoting the proliferation and survival of M. smegmatis in macrophages. Taken together, our findings revealed a novel transcriptional regulation mechanism of RegX3 on propionate metabolism, and uncovered that the nutrients-sensing regulatory system puts bacteria at metabolic steady state by altering cell morphology. More importantly, since we observed that M. tuberculosis RegX3 also binds to the prpR operon in vitro, the RegX3-mediated regulation might be general in M. tuberculosis and other mycobacteria for nutrient sensing and environmental adaptation.
Background Erythromycin A (Er A) has a broad antibacterial effect and is a source of erythromycin derivatives. Methylation of erythromycin C (Er C), catalyzed by S-adenosyl-methionine (SAM)-dependent O-methyltransferase EryG, is the key final step in Er A biosynthesis. Er A biosynthesis, including EryG production, is regulated by the phosphate response factor PhoP and the nitrogen response factor GlnR. However, the regulatory effect of these proteins upon S-adenosyl-methionine synthetase (MetK) production is unknown. Results In this study, we used bioinformatics approaches to identify metK (SACE_3900), which codes for S-adenosyl-methionine synthetase (MetK). Electrophoretic mobility shift assays (EMSAs) revealed that PhoP and GlnR directly interact with the promoter of metK, and quantitative PCR (RT-qPCR) confirmed that each protein positively regulated metK transcription. Moreover, intracellular SAM was increased upon overexpression of either phoP or glnR under phosphate or nitrogen limited conditions, respectively. Finally, both the production of Er A and the transformation ratio from Er C to Er A increased upon phoP overexpression, but surprisingly, not upon glnR overexpression. Conclusions Manipulating the phosphate and nitrogen response factors, PhoP and GlnR provides a novel strategy for increasing the yield of SAM and the production of Er A in Saccharopolyspora erythraea .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.