To effectively use augmented reality (AR) technology for end-user involved design collaboration, it is necessary to ensure the effectiveness of the AR system from the end-user’s perspective. However, most efforts have mainly focused on technological development, and as such, limited attention has been paid to the end-user’s application of the AR system. Therefore, this study investigates how the AR system affects architectural design review based on the user’s perspectives. Three different display systems presenting a 3D model including a 2D screen, VR, and AR were tested, and a total of 76 participants evaluated visual presentation quality, perceived acceptability, and user experience according to their usage of the visualization platform types during the design review activities. Compared to other systems, the results indicated that the AR system could be more effective in reviewing the visual elements of a building. Furthermore, AR showed the highest ratings for acceptance level and user experience. The innovation provided by AR created a positive user experience, despite its remaining challenges to be resolved in terms of functionality. Since it is expected that the use of AR can be promoted by overcoming certain technological limitations, this study contributes to guiding AR system applications for end-users involved in the design review process.
Three-dimensional (3D) visualization technology, such as augmented reality (AR), has served as the display for building information modeling (BIM)-based architectural design collaboration to provide more effective design observation and communication for stakeholders. That said, AR has several technical limitations in terms of personal device issues, user experience, and visualization quality. A new form of AR called spatial augmented reality (SAR) has been introduced to address these issues, which uses a digital projector to present graphics on physical objects for augmenting real-world objects. Therefore, SAR has great benefits and potentials to combine with BIM for design collaboration. This paper introduces a BIM-based SAR operational framework, where 3D building models generated from BIM software are imported to projection mapping tools to display building surface textures on physical white building models. A case study using Revit and 3ds Max as the BIM software, and MadMapper as the projection mapping tool, was conducted to demonstrate the feasibility of the proposed framework and to evaluate the projection performance of SAR. The case study showed that the texture of BIM models could be projected on the objects clearly and realistically. Additionally, the proposed SAR method potentially offers intuitive observation of building models and comfortable wear-free experience for collaborative design, and the qualitative analysis by changing the parameters was conducted to test the different projection conditions. Since it is expected that the use of SAR can be promoted by overcoming the discussed technical limitations and possible solution application, this study aims to traceability provide the whole process of BIM-based SAR for architectural design collaboration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.