Photocatalysis, as an inexpensive and safe technology to convert solar energy, is essential for the efficient utilization of sustainable renewable energy sources. Earth-abundant cobalt sulfide-based composites have generated great interest in the field of solar fuel conversion because of their cheap, diverse structures and facile preparation. Over the past 10 years, the number of reports on cobalt sulfide-based photocatalysts has increased year by year, and more than 500 publications on the application of cobalt sulfide groups in photocatalysis can be found in the last three years. In this review, we initially summarize the four common strategies for preparing cobalt sulfide-based composite materials. Then, the multiple roles of cobalt sulfide-based cocatalysts in photocatalysis have been discussed. After that, we present the latest progress of cobalt sulfide in four fields of photocatalysis application, including photocatalytic hydrogen production, carbon dioxide reduction, nitrogen fixation, and photocatalytic degradation of pollutants. Finally, the development prospects and challenges of cobalt sulfide-based photocatalysts are discussed. This review is expected to provide useful reference for the construction of high-performance cobalt sulfide-based composite photocatalytic materials for sustainable solar-chemical energy conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.