BrlA and AbaA are key activators of the central developmental pathway (CDP) that controls asexual development in Aspergillus but their roles remain insufficiently understood in hypocerealean insect pathogens. Here, regulatory roles of BrlA and AbaA orthologs in Metarhizium robertsii (Clavicipitaceae) were characterized for comparison to those elucidated previously in Beauveria bassiana (Cordycipitaceae) at phenotypic and transcriptomic levels. Time-course transcription profiles of brlA, abaA, and the other CDP activator gene wetA revealed that they were not so sequentially activated in M. robertsii as learned in Aspergillus. Aerial conidiation essential for fungal infection and dispersal, submerged blastospore production mimicking yeast-like budding proliferation in insect hemocoel, and insect pathogenicity via cuticular penetration were all abolished as a consequence of brlA or abaA disruption, which had little impact on normal hyphal growth. The disruptants were severely compromised in virulence via cuticle-bypassing infection (intrahemocoel injection) and differentially impaired in cellular tolerance to oxidative and cell wall-perturbing stresses. The ΔbrlA and ΔabaA mutant shad 255 and 233 dysregulated genes (up/down ratios: 52:203 and 101:122) respectively, including 108 genes co-dysregulated. These counts were small compared with 1513 and 2869 dysregulated genes (up/down ratios: 707:806 and 1513:1356) identified in ΔbrlA and ΔabaA mutants of B. bassiana. Results revealed not only conserved roles for BrlA and AbaA in asexual developmental control but also their indispensable roles in fungal adaptation to the insect-pathogenic lifecycle and host habitats. Intriguingly, BrlA- or AbaA-controlled gene expression networks are largely different between the two insect pathogens, in which similar phenotypes were compromised in the absence of either brlA or abaA.
WetA and VosA regulate conidiation and conidial maturation required for the life cycle of Beauveria bassiana, like they do in Aspergillus, but remain functionally unexplored in Metarhizium robertsii , another hypocrealean pathogen considered to have evolved insect pathogenicity ~130 million years later than B. bassiana . This study reveals a similar role of WetA ortholog in asexual development, conidial maturation, and insect pathogenicity, and also its distinctive role in mediating some other conidial maturation-related cellular events, but has functional redundancy of VosA in M. robertsii .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.