In most safety-critical domains the need for traceability is prescribed by certifying bodies. Trace links are generally created among requirements, design, source code, test cases and other artifacts; however, creating such links manually is time consuming and error prone. Automated solutions use information retrieval and machine learning techniques to generate trace links; however, current techniques fail to understand semantics of the software artifacts or to integrate domain knowledge into the tracing process and therefore tend to deliver imprecise and inaccurate results. In this paper, we present a solution that uses deep learning to incorporate requirements artifact semantics and domain knowledge into the tracing solution. We propose a tracing network architecture that utilizes Word Embedding and Recurrent Neural Network (RNN) models to generate trace links. Word embedding learns word vectors that represent knowledge of the domain corpus and RNN uses these word vectors to learn the sentence semantics of requirements artifacts. We trained 360 different configurations of the tracing network using existing trace links in the Positive Train Control domain and identified the Bidirectional Gated Recurrent Unit (BI-GRU) as the best model for the tracing task. BI-GRU significantly out-performed stateof-the-art tracing methods including the Vector Space Model and Latent Semantic Indexing.
Most modern Issue Tracking Systems (ITSs) for open source software (OSS) projects allow users to add comments to issues. Over time, these comments accumulate into discussion threads embedded with rich information about the software project, which can potentially satisfy the diverse needs of OSS stakeholders. However, discovering and retrieving relevant information from the discussion threads is a challenging task, especially when the discussions are lengthy and the number of issues in ITSs are vast. In this paper, we address this challenge by identifying the information types presented in OSS issue discussions. Through qualitative content analysis of 15 complex issue threads across three projects hosted on GitHub, we uncovered 16 information types and created a labeled corpus containing 4656 sentences. Our investigation of supervised, automated classification techniques indicated that, when prior knowledge about the issue is available, Random Forest can effectively detect most sentence types using conversational features such as the sentence length and its position. When classifying sentences from new issues, Logistic Regression can yield satisfactory performance using textual features for certain information types, while falling short on others. Our work represents a nontrivial first step towards tools and techniques for identifying and obtaining the rich information recorded in the ITSs to support various software engineering activities and to satisfy the diverse needs of OSS stakeholders.Index Terms-collaborative software engineering, issue tracking system, issue discussion analysis
Photonic computation has garnered huge attention due to its great potential to accelerate artificial neural network tasks at much higher clock rate to digital electronic alternatives. Especially, reconfigurable photonic processor consisting of Mach–Zehnder interferometer (MZI) mesh is promising for photonic matrix multiplier. It is desired to implement high-radix MZI mesh to boost the computation capability. Conventionally, three cascaded MZI meshes (two universal N × N unitary MZI mesh and one diagonal MZI mesh) are needed to express N × N weight matrix with O(N 2) MZIs requirements, which limits scalability seriously. Here, we propose a photonic matrix architecture using the real-part of one nonuniversal N × N unitary MZI mesh to represent the real-value matrix. In the applications like photonic neural network, it probable reduces the required MZIs to O(Nlog2 N) level while pay low cost on learning capability loss. Experimentally, we implement a 4 × 4 photonic neural chip and benchmark its performance in convolutional neural network for handwriting recognition task. Low learning-capability-loss is observed in our 4 × 4 chip compared to its counterpart based on conventional architecture using O(N 2) MZIs. While regarding the optical loss, chip size, power consumption, encoding error, our architecture exhibits all-round superiority.
The operation of a microgrid becomes significantly complex with the high penetration of distributed energy resources (DERs), demand-side management, market operation, and disconnection and reconnection to the utility grid. Therefore, development of advanced tools/platforms for testing operation and control of microgrid has attracted more and more attention nowadays. The current literature reveals that the microgrid's control and management are designed to be tested either in a numerical simulation approach, or only under a specific hardware device/experiment environment; they do not deal with a comprehensive platform capable of easily executing very complex applications built by composing required functionalities in a standardized, easy-to-use, and well-defined way. To address the problem of limited testing functions of existing tools/platforms, a hardware-in-the-loop (HIL) approach, in particular combining a power-HIL (PHIL) and a signal-HIL (SHIL), is proposed in this paper. Such an approach is suitable for testing the system-level controller energy management systems (EMSs) and hardware controllers at signal level, as well as hardware devices like power converters at power level. Hence, this platform is designed for flexibility and universality. The HIL platform is presented in this work and its performance is demonstrated in a sample application. Index Terms-Energy management system (EMS), hardware in-the-loop (HIL) simulation, microgrid. 1551-3203
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.