Highlights d Six high-quality ixodid tick genomes and 678 re-sequenced tick specimens d Insights into the genetic basis of tick hematophagy and related phenotypes d Population structure and genetic diversity of six tick species d Tick-borne pathogen composition and distribution by metagenome analyses
The increasing prevalence and expanding distribution of tick-borne viruses globally have raised health concerns, but the full repertoire of the tick virome has not been assessed. We sequenced the meta-transcriptomes of 31 different tick species in the Ixodidae and Argasidae families from across mainland China, and identified 724 RNA viruses with distinctive virome compositions among genera. A total of 1,801 assembled and complete or nearly complete viral genomes revealed an extensive diversity of genome architectures of tick-associated viruses, highlighting ticks as a reservoir of RNA viruses. We examined the phylogenies of different virus families to investigate virome evolution and found that the most diverse tick-associated viruses are positive-strand RNA virus families that demonstrate more ancient divergence than other arboviruses. Tick-specific viruses are often associated with only a few tick species, whereas virus clades that can infect vertebrates are found in a wider range of tick species. We hypothesize that tick viruses can exhibit both ‘specialist’ and ‘generalist’ evolutionary trends. We hope that our virome dataset will enable much-needed research on vertebrate-pathogenic tick-associated viruses.
IntroductionTicks are the most important obligate blood-feeding vectors of human pathogens. With the advance of high-throughput sequencing, more and more bacterial community and virome in tick has been reported, which seems to pose a great threat to people.MethodsA total of 14 skin specimens collected from tick-bite patients with mild to severe symptoms were analyzed through meta-transcriptomic sequencings.ResultsFour bacteria genera were both detected in the skins and ticks, including Pseudomonas, Acinetobacter, Corynebacterium and Propionibacterium, and three tick-associated viruses, Jingmen tick virus (JMTV), Bole tick virus 4 (BLTV4) and Deer tick mononegavirales-like virus (DTMV) were identified in the skin samples. Except of known pathogens such as pathogenic rickettsia, Coxiella burnetii and JMTV, we suggest Roseomonas cervicalis and BLTV4 as potential new agents amplified in the skins and then disseminated into the blood. As early as 1 day after a tick-bite, these pathogens can transmit to skins and at most four ones can co-infect in skins.DiscussionAdvances in sequencing technologies have revealed that the diversity of tick microbiome and virome goes far beyond our previous understanding. This report not only identifies three new potential pathogens in humans but also shows that the skin barrier is vital in preventing horizontal transmissions of tick-associated bacteria or virus communities to the host. It is the first research on patients’ skin infectome after a tick bite and demonstrates that more attention should be paid to the cutaneous response to prevent tick-borne illness.
The complete mitochondrial genome of Amblyomma geoemydae is reported for the first time in this study. Its entire mitogenome is 14,780 bp in length, contained 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and two non-coding regions. The phylogenetic analysis by Maximum-likelihood method show that A. geoemydae and the others of genus Amblyomma are in the same clade, indicating that A. geoemydae belongs to the genus Amblyomma.
ABSTRACT. In this study, we determined the whole mitochondrial genome profile of the three-spot swimming crab (Portunus sanguinolentus) and elucidated phylogenetic relationships between representative species in the order Decapoda. The mitochondrial genome was 16,024 bp in length and consisted of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a putative control region. Of the 37 genes, 23 were encoded by the heavy strand while 14 were encoded by the light strand. Four types of start codons were identified; ATG initiated nine genes, ATT initiated two genes, and ATC and GTG each started one gene. Nine protein-coding genes ended with a complete TAA or TAG stop codon, and four genes ended with an incomplete T or TA codon. Fourteen non-coding regions were found, which ranged from 1 to 34 bp in length. Nine overlaps were observed, with lengths between 1 and 7 bp. Phylogenetic analysis suggested that P. sanguinolentus is genetically closest to P. trituberculatus and P. pelagicus. Charybdis feriata, C. japonica, and Thalamita crenata formed a single cluster, and were close to the genera Callinectes and Portunus. Therefore, the genera Charybdis and Thalamita should be classified into the subfamily Portuninae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.